Using Simulink®

Version 6

Simulink’

Simulation and Model-Based Design

Modeling
Simulation

Implementation

Q‘\The MathWorks

X C°p)

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

508-647-7000
508-647-7001

The MathWorks, Inc.

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

Phone
Fax

Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Using Simulink
O COPYRIGHT 1990 - 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 1990 First printing New for Simulink 1
December 1996 Second printing Revised for Simulink 2
January 1999 Third printing Revised for Simulink 3 (Release 11)

November 2000 Fourth printing Revised for Simulink 4 (Release 12)

July 2002 Fifth printing Revised for Simulink 5 (Release 13)

April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Sixth printing Revised for Simulink 6.0 (Release 14)

Contents

Getting Started

What Is Simulink? 1-2
Tool for Interactive Simulation 1-2
Tool for Model-Based Design 1-2
Related Products 1-3
RunningaDemoModel 14
Description of the Demo 1-5
Some ThingstoTry 1-6
What This Demo Illustrates 1-7
Other Useful Demos 1-7
BuildingaModel, 1-9
Setting Simulink Preferences 1-18
Miscellaneous Preferences 1-19
Font Preferences 1-20
Simulation Preferences 1-21
How Simulink Works

Introduction 2-2
Modeling Dynamic Systems 2-3
Block Diagram Semantics 2-3
CreatingModels 2-4
Time ... e 2-4
States ... 2-4
Block Parameters 2-7
Tunable Parametersc.0 i iinnn.. 2-8
Block Sample Times 2-8

ii

Contents

Custom Blocks 2-9

Systems and Subsystems 2-9
Signals 2-10
Block Methodst 2-11
Model Methods, 2-12
Simulating Dynamic Systems 2-13
Model Compilation iiiiiiiinnn... 2-13
Link Phase it 2-15
Simulation Loop Phase 2-15
SOIVerS ... 2-17
Zero-Crossing Detection 2-19
Algebraic Loopsc.iiii i e 2-24
Modeling and Simulating Discrete Systems 2-31
Specifying Sample Time 2-31
Purely Discrete Systems 2-35
Multirate Systemsc. . 2-35
Determining Step Size for Discrete Systems 2-36
Sample Time Propagation 2-37
Mixed Continuous and Discrete Systems 2-40

Simulink Basics

Starting Simulink 3-2
OpeningModels 34
Avoiding Initial Model Open Delay 34
Entering Simulink Commands 3-5
Using the Simulink Menu Bar to Enter Commands 3-5
Using Context-Sensitive Menus to Enter Commands 3-5
Using the Simulink Toolbar to Enter Commands 35
Using the MATLAB Window to Enter Commands 3-6
UndoingaCommand0iiiiiiinnn... 3-6

Simulink Windows 3-7

4

Status Bar 3-7
Zooming Block Diagrams, 3-7
Panning Block Diagrams 3-8
SavingaModel 3-9
Saving a Model in Earlier Formats 3-9
Printing a Block Diagram 3-12
Print DialogBox 3-12
Print Command i, 3-13
Specifying Paper Size and Orientation 3-14
Positioning and Sizinga Diagram 3-15
Generating a Model Report 3-16
Model Report Optionsciiiiieinnnennn... 3-17
Summary of Mouse and Keyboard Actions 3-19
Manipulating Blocks, .. 3-19
Manipulating Lines 3-20
Manipulating Signal Labels 3-20
Manipulating Annotations 3-21
Ending a Simulink Session 3-22
Creating a Model

CreatingaNewModel 4-2
Selecting Objects 4-3
Selecting One Object, 4-3
Selecting More Than One Object 4-3
Specifying Block Diagram Colors 4-5
Choosinga Custom Color ovo.... 4-5
Defining a Custom Color 4-6

iii

iv

Contents

Specifying Colors Programmatically 4-6

Displaying Sample Time Colors 4-7
ConnectingBlocks 4-9
Automatically Connecting Blocks 4-9
Manually Connecting Blocks 4-11
Disconnecting Blocks 4-15
Annotating Diagrams 4-16
Using TeX Formatting Commands in Annotations 4-17
Creating Annotations Programmatically 4-18
Creating Subsystems 4-20
Creating a Subsystem by Adding the Subsystem Block 4-20
Creating a Subsystem by Grouping Existing Blocks 4-21
Model Navigation Commands 4-23
Window Reuse 4-23
Labeling Subsystem Ports 4-24
Controlling Access to Subsystems 4-24
Creating Conditionally Executed Subsystems 4-26
Enabled Subsystems 4-26
Triggered Subsystems, 4-31
Triggered and Enabled Subsystems 4-35
Conditional Execution Behavior 4-38
Modeling with Control Flow Blocks 4-42
Creating Conditional Control Flow Statements 4-42
Comparing Stateflow and Control Flow Statements 4-49
ReferencingModels 4-53
Model Referencing Versus Subsystems 4-54
Creating a Model Reference 4-54
Opening a Referenced Model 4-56
Parameterizing Model References 4-56
Using Model Arguments 4-57
Model Block Sample Timesccviiueennn... 4-61
Referenced Model /O 4-63
Model Interfacest 4-64

Building Simulation Targets 4-66

Converting Subsystems to Model References 4-67
Model Discretizer i, 4-68
Requirements 4-68
Discretizing a Model from the Model Discretizer GUI 4-69
Viewing the Discretized Model 4-78
Discretizing Blocks from the Simulink Model 4-81

Discretizing a Model from the MATLAB Command Window . 4-89

Using Callback Routines 4-90
Tracing Callbacks 4-90
Creating Model Callback Functions 4-90
Creating Block Callback Functions 4-92
Port Callback Parameters 4-95

Working with Model Workspaces 4-96
Changing a Model Workspace 4-97
Model Workspace DialogBox 4-99

Managing Model Versions 4-103
Specifying the Current User 4-103
Model Properties DialogBox 4-105
Creating a Model Change History 4-110
Version Control Properties 4-111

Working with Blocks

AboutBlocks 5-2
Block Data Tipscciiiiii e 5-2
Virtual Blocks 5-2

EditingBlocks 5-4
Copying and Moving Blocks from One Window to Another ... 5-4
Moving BlocksinaModel 5-5

Copying BlocksinaModel 5-6

vi

Contents

Deleting Blocks 5-6

Setting Block Parameters 5-7
Setting Block-Specific Parameters 5-7
Tuning Parameters, 5-8
Block Properties Dialog Box 5-9
State Properties Dialog Box 5-12

Changing a Block’s Appearance 5-14
Changing the OrientationofaBlock 5-14
ResizingaBlock 5-14
Displaying Parameters Beneatha Block 5-15
Using Drop Shadowscc0iiiiiiiinineann.. 5-15
Manipulating Block Names 5-15
Specifying a Block’s Color 5-17

Displaying Block OQutputs 5-18
Enabling Port Values Display 5-18
Port Values Display Options 5-19

Controlling and Displaying the Sorted Order 5-20
Displaying the Sorted Order 5-20
Assigning Block Priorities, 5-20

Lookup Table Editor 5-22
Browsing LUT Blocks, 5-23
Editing Table Values 5-24
Displaying N-D Tables, 5-25
Plotting LUT Tables iiiiiiiiinn... 5-26
Editing Custom LUT Blocks 5-27

Working with Block Libraries 5-29
Terminologyciiiiii it 5-29
Simulink Block Library 5-29
Creatinga Library 5-30
Modifyinga Library00t iiiiinnn... 5-30
Creating a Library Link 5-30
Disabling Library Links 5-31
Modifying a Linked Subsystem 5-31

Propagating Link Modifications 5-32

Updating a Linked Block 5-32
Updating Links to Reflect Block Path Changes 5-32
Breaking a Link to a Library Block 5-33
Finding the Library Block for a Reference Block 5-34
Library Link Status 5-34
Displaying Library Links 5-35
Getting Information About Library Blocks 5-36
Browsing Block Libraries0.... 5-36
Accessing Block Data During Simulation 5-40

Working with Signals

6

SignalBasics 6-2
About Signals 6-2
Creating Signals 6-2
Signal Labels i, 6-2
Displaying Signal Values 6-3
Signal Data Typesutiiiit i 6-3
Signal Dimensionstitiniiiiineeaann. 6-3
Complex Signals 6-4
Virtual Signals i 6-4
Control Signals i 6-6
Signal Buses i e 6-6
Checking Signal Connections 6-9
Signal Glossaryoiiiiiniii. .. 6-10

Determining Output Signal Dimensions 6-12
Signal and Parameter Dimension Rules 6-13
Scalar Expansion of Inputs and Parameters 6-14

The Signal & Scope Manager 6-16
Generator and Viewer Types 6-17
Generator and Viewer Objects 6-18
Signals connected to Generator/Viewer 6-21

vii

The Signal Selector 6-23

Port/Axis Selector 6-23
Model Hierarchy 6-24
Inputs/Signals List 6-24
Logging Signals 6-27
Enabling Signal Loggingcoiu.... 6-27
Specifying a Logging Name 6-27
Limiting the Data Logged for a Signal 6-28
Logging Referenced Model Signals 6-28
Accessing Logged SignalData 6-29
Signal Properties DialogBox 6-30
Logging and Accessibility Options 6-32
Real-Time Workshop Options 6-33
Documentation Options 6-34
Working with Test Points 6-35
Designating a Signal as a Test Point 6-35
Displaying Test Point Indicators 6-36
Displaying Signal Properties 6-37
Signal Namesttt 6-38
Signal Labels 6-39
Displaying Signals Represented by Virtual Signals 6-40
Working with Signal Groups 6-41
Creating a Signal Group Set 6-41
The Signal Builder DialogBox 6-42
Editing Signal Groups 6-44
Editing Signals 6-44
Editing Waveforms, 6-46
Signal Builder Time Range 6-50
Exporting Signal Group Data 6-51
Simulating with Signal Groups 6-51
Simulation Options DialogBox 6-52
BusEditor 6-55
Bus types in base workspace, 6-56

viil Contents

Buselements 6-57

Busname 6-57
Headerfile i 6-58
Busdescription 6-58
Working with Data
7

Working with DataTypes 7-2
Data Types Supported by Simulink 7-2
Fixed-Point Data 7-3
Fixed-Point Settings Interface 74
Block Support for Data and Numeric Signal Types 74
Specifying Block Parameter Data Types 7-5
Creating Signals of a Specific Data Type 7-5
Displaying Port Data Typesccciiiiiinnn... 7-5
Data Type Propagation 7-6
Data TypingRules 7-6
Enabling Strict Boolean Type Checking 7-7
Typecasting Signals i, 7-7
Typecasting Parameters 7-7
Working with Data Objects 7-10
About Data Object Classes, 7-10
About Data Object Methods 7-11
Constructorsc. it e 7-12
Creating Data Objects 7-12
About Object Properties 7-14
Changing Object Properties 7-15
Saving and Loading Data Objects 7-16
Using Data Objects in Simulink Models 7-16
Creating Persistent Data Objects 7-17
Subclassing Simulink DataClasses 7-18

Associating User DatawithBlocks 7-30

Modeling with Simulink

8

Modeling Equations 8-2
Converting Celsius to Fahrenheit 8-2
Modeling a Continuous System 8-3

Avoiding InvalidLoops 8-6

Tips for Building Models 8-8

Exploring, Searching, and Browsing Models

9

The Model Explorero, 9-2
Model Hierarchy Pane 9-3
Contents Pane 9-4
Dialog Pane i 9-9
Main Toolbarttt 9-9
SearchBar 9-11

TheFinder i, 9-16
Filter Options i, 9-18
Search Criteria, 9-18

The Model Browserc..... 9-22
Using the Model Browser on Windows 9-22
Using the Model Browser on UNIX 9-24

Running Simulations

10 |

Simulation Basics L 10-2
Controlling Execution of a Simulation 10-3
Interacting with a Running Simulation 10-5

Contents

Specifying a Simulation Start and Stop Time 10-6

ChoosingaSolver 10-7
Choosinga Solver Typeciiiiiiiinnnn .. 10-7
Choosing a Fixed-Step Solver 10-8
Choosing a Variable-Step Solver 10-12

Importing and Exporting Simulation Data 10-16
Importing Input Data from the MATLAB Workspace 10-16
Exporting Output Data to the MATLAB Workspace 10-20
Importing and Exporting States 10-22
Limiting Output 10-23
Specifying Output Options 10-23

Configuration Sets 10-26
The Active Seto 10-26
Activating a Configuration Set 10-26
Copying and Moving Configuration Sets 10-26
Creating Configuration Sets 10-27
Setting Values in Configuration Sets 10-27
Configuration Set APT 10-27
The Model Configuration DialogBox 10-28

The Configuration Parameters Dialog Box 10-30
The Solver Pane 10-31
Data Import/Export Pane 10-39
The Optimization Pane 10-43
The Diagnostics Pane 10-48
Hardware Implementation Pane 10-63
Model Referencing Pane 10-67

Diagnosing Simulation Errors 10-72
Simulation Diagnostics Viewer 10-72
Creating Custom Simulation Error Messages 10-73

Improving Simulation Performance and Accuracy 10-76
Speeding Up the Simulation 10-76
Improving Simulation Accuracy 10-77

xi

xii

Running a Simulation Programmatically 10-78
Using the sim Command 10-78
Using the set_param Command 10-78

Analyzing Simulation Results

11

Viewing Output Trajectories 11-2
Using the Scope Block 11-2
Using Return Variables 11-2
Using the To Workspace Block 11-3

LinearizingModels, 114

Finding Steady-State Points 11-7

Creating Masked Subsystems

12 |

Contents

About Maskst 12-2
Mask Features 12-2
Creating Masks 124

Masked Subsystem Example 12-5
Creating Mask Dialog Box Prompts 12-6
Creating the Block Description and Help Text 12-8
Creating the Block Icon 12-8

Masking a Subsystem 12-10

The Mask Editor 12-12
ThelconPane 12-14
The Parameters Pane 12-17
Control Typesttt e 12-20

The Initialization Pane 12-23

13

The Documentation Pane 12-25
Linking Mask Parameters to Block Parameters 12-27
Creating Dynamic Dialogs for Masked Blocks 12-28

Setting Masked Block Dialog Parameters 12-28

Predefined Masked Dialog Parameters 12-29

Simulink Debugger
Introduction 13-2
Using the Debugger’s Graphical User Interface 13-3

Toolbar 13-4

Breakpoints Pane, 13-6

Simulation Loop Pane 13-7

Outputs Pane i, 13-8

Sorted List Pane 13-9

Status Pane 13-10
Using the Debugger’s Command-Line Interface 13-11

Method ID e 13-11

BlockID e 13-11

Accessing the MATLAB Workspace 13-11
GettingOnlineHelp 13-12
Starting the Debugger 13-13
Starting a Simulation 13-14
Running a Simulation Stepby Step 13-15

Stepping Commands, 13-17

Continuing a Simulation 13-18

Running a Simulation Nonstop 13-19

xiii

X1iv Contents

DebugPointer 13-20

Setting Breakpoints 13-22
Setting Unconditional Breakpoints 13-22
Setting Conditional Breakpoints 13-24

Displaying Information About the Simulation 13-28
Displaying Block I/O 13-28
Displaying Algebraic Loop Information 13-30
Displaying System States 13-31
Displaying Integration Information 13-31

Displaying Information About the Model 13-32
Displaying a Model’s Sorted Lists 13-32
DisplayingaBlock 13-33

Simulink Accelerator

14 |

The Simulink Accelerator 14-2
Accelerator Limitations 14-2
How the Accelerator Works 14-2
Running the Simulink Accelerator 14-3
Handling Changes in Model Structure 14-4
Increasing Performance of Accelerator Mode 14-5
Blocks That Do Not Show Speed Improvements 14-6

Using the Simulink Accelerator with the Simulink Debugger 14-7
Interacting with the Simulink Accelerator Programmatically 14-8

Comparing Performance 14-9
Customizing the Simulink Accelerator Build Process 14-10
Controlling S-Function Execution 14-11
Profiler 14-12
How the Profiler Works 14-12
Enabling the Profiler 14-14
The Simulation Profile 14-15

Using the Embedded MATLAB Function Block

15|

Introduction to Embedded MATLAB Function Blocks ... 15-2

What Is an Embedded MATLAB Function Block? 15-2
Why Use Embedded MATLAB Function Blocks? 154
Creating an Example Embedded MATLAB Function 15-7
Adding an Embedded MATLAB Function Block to a Model .. 15-8
Programming the Embedded MATLAB Function 15-9
Checking the Function for Errors 15-15
Defining Inputs and Outputs 15-17
Debugging an Embedded MATLAB Function 15-20
Debugging the Function in Simulation 15-20
Watching Function Variables During Simulation 15-27
The Embedded MATLAB Function Editor 15-30
Changing the Embedded MATLAB Editor 15-31
Editing the Embedded MATLAB Function 15-34
Defining Embedded MATLAB Function Arguments 15-36
Debugging Embedded MATLAB Functions 15-37
Typing Function Arguments 15-39
Inheriting Argument Data Types 15-41
Selecting Types for Arguments 15-42
Specifying Argument Types with Expressions 15-43
Sizing Function Arguments 15-45
Inheriting Argument Sizes from Simulink 15-47
Specifying Argument Sizes with Expressions 15-48

Parameter Arguments in Embedded MATLAB Functions 15-50

Local Variables in Embedded MATLAB Functions 15-52
Declaring Local Variables Implicitly 15-52
Declaring Local Complex Variables Implicitly 15-53

Functions in Embedded MATLAB Functions 15-56

Calling Subfunctions in Embedded MATLAB Functions ... 15-56

XV

Calling Embedded MATLAB Run-Time Library Functions . 15-57
Calling MATLAB Functions 15-57

Index

XVl Contents

Getting Started

The following sections use examples to give you a quick introduction to using Simulink® to model and
simulate dynamic systems.

What Is Simulink? (p. 1-2) Introduces Simulink.
Running a Demo Model (p. 1-4) Example of how to run a Simulink model.
Building a Model (p. 1-9) Example of how to build a Simulink model.

Setting Simulink Preferences (p. 1-18) How to set Simulink preferences.

1 e ng Started

What Is Simulink?

1-2

Simulink® is a software package for modeling, simulating, and analyzing
dynamic systems. It supports linear and nonlinear systems, modeled in
continuous time, sampled time, or a hybrid of the two. Systems can also be
multirate, i.e., have different parts that are sampled or updated at different
rates.

Tool for Interactive Simulation

Simulink encourages you to try things out. You can easily build models from
scratch, or take an existing model and add to it. Simulations are interactive, so
you can change parameters on the fly and immediately see what happens. You
have instant access to all the analysis tools in MATLAB™, so you can take the
results and analyze and visualize them. A goal of Simulink is to give you a
sense of the fun of modeling and simulation, through an environment that
encourages you to pose a question, model it, and see what happens.

Simulink is also practical. With thousands of engineers around the world using
it to model and solve real problems, knowledge of this tool will serve you well
throughout your professional career.

Tool for Model-Based Design

With Simulink, you can move beyond idealized linear models to explore more
realistic nonlinear models, factoring in friction, air resistance, gear slippage,
hard stops, and the other things that describe real-world phenomena. Simulink
turns your computer into a lab for modeling and analyzing systems that simply
wouldn’t be possible or practical otherwise, whether the behavior of an
automotive clutch system, the flutter of an airplane wing, the dynamics of a
predator-prey model, or the effect of the monetary supply on the economy.

For modeling, Simulink provides a graphical user interface (GUI) for building
models as block diagrams, using click-and-drag mouse operations. With this
interface, you can draw the models just as you would with pencil and paper (or
as most textbooks depict them). This is a far cry from previous simulation
packages that require you to formulate differential equations and difference
equations in a language or program. Simulink includes a comprehensive block
library of sinks, sources, linear and nonlinear components, and connectors. You
can also customize and create your own blocks. For information on creating
your own blocks, see the separate Writing S-Functions guide.

What Is Simulink?e

Models are hierarchical, so you can build models using both top-down and
bottom-up approaches. You can view the system at a high level, then
double-click blocks to go down through the levels to see increasing levels of
model detail. This approach provides insight into how a model is organized and
how its parts interact.

After you define a model, you can simulate it, using a choice of integration
methods, either from the Simulink menus or by entering commands in the
MATLAB Command Window. The menus are particularly convenient for
interactive work, while the command-line approach is very useful for running
a batch of simulations (for example, if you are doing Monte Carlo simulations
or want to sweep a parameter across a range of values). Using scopes and other
display blocks, you can see the simulation results while the simulation is
running. In addition, you can change parameters and immediately see what
happens, for “what if” exploration. The simulation results can be put in the
MATLAB workspace for postprocessing and visualization.

Model analysis tools include linearization and trimming tools, which can be
accessed from the MATLAB command line, plus the many tools in MATLAB
and its application toolboxes. And because MATLAB and Simulink are
integrated, you can simulate, analyze, and revise your models in either
environment at any point.

Related Products

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with Simulink and that extend the capabilities
of Simulink. For information about these related products, see
http://www.mathworks.com/products/simulink/related.html.

1-3

1 e ng Started

Running a Demo Model

An interesting demo program provided with Simulink models the
thermodynamics of a house. To run this demo, follow these steps:

1 Start MATLAB. See your MATLAB documentation if you’re not sure how to
do this.

2 Run the demo model by typing thermo in the MATLAB Command Window.
This command starts up Simulink and creates a model window that contains
this model.

=10l x|

File Edit Wiew Simulation Format Tools Help

D|EsEE&| s BR[| IINormal ‘H@Iﬁ”ﬂ?@

Dollar
Gain

] |
| C2F
Heatar Thdoor ve.

ol f=]

Set Point "
Fahmnheit -
o Celsius Themostat Blowsr Cekius to Quidoor Tamp. »
Fahmenheit
He
- ouse Thermo
&) F2C Phis
. Tin
Avg Outdoor Fahmenheit
Temp [E 1o Calkius
W7
Cuaily Temp
WVariation

House Themodynamics Coublke click
iDoublke clickon the °?° for mom info) hem for

Simulink Help

To start and stop the simulation, use the "Start®
sakction in the *Simulation” pull-down menu

Ready 100% odeds
4

3 Double-click the Scope block labeled Thermo Plots.

The Scope block displays two plots labeled Indoor vs. Outdoor Temp and
Heat Cost ($), respectively.

14

Running a Demo Model

4 To start the simulation, pull down the Simulation menu and choose the
Start command (or, on Microsoft Windows, click the Start button on the
Simulink toolbar). As the simulation runs, the indoor and outdoor
temperatures appear in the Indoor vs. Outdoor Temp plot and the
cumulative heating cost appears in the Heat Cost ($) plot.

5 To stop the simulation, choose the Stop command from the Simulation
menu (or click the Pause button on the toolbar). If you want to explore other
parts of the model, look over the suggestions in “Some Things to Try” on
page 1-6.

6 When you're finished running the simulation, close the model by choosing
Close from the File menu.

Description of the Demo

The demo models the thermodynamics of a house. The thermostat is set to 70
degrees Fahrenheit and is affected by the outside temperature, which varies by
applying a sine wave with amplitude of 15 degrees to a base temperature of 50
degrees. This simulates daily temperature fluctuations.

The model uses subsystems to simplify the model diagram and create reusable
systems. A subsystem is a group of blocks that is represented by a Subsystem
block. This model contains five subsystems: one named Thermostat, one named
House, and three Temp Convert subsystems (two convert Fahrenheit to
Celsius, one converts Celsius to Fahrenheit).

The internal and external temperatures are fed into the House subsystem,
which updates the internal temperature. Double-click the House block to see
the underlying blocks in that subsystem.

Indoor Temp
Tin

House subsystem

Themodynamic ode|

1/Req
forthe Houss

Cutdoor Temp
Tout

1-5

1 e ng Started

1-6

The Thermostat subsystem models the operation of a thermostat, determining
when the heating system is turned on and off. Double-click the block to see the
underlying blocks in that subsystem.

O, () | Thermostat subsystem
Temr

Blower
Felayt anitch

Both the outside and inside temperatures are converted from Fahrenheit to
Celsius by identical subsystems.

"
Faheit h (*) | Fahrenheit to Celsius conversion (F2C)

Celsius
out

When the heat is on, the heating costs are computed and displayed on the Heat
Cost ($) plot on the Thermo Plots Scope. The internal temperature is displayed
on the Indoor Temp Scope.

Some Things to Try

Here are several things to try to see how the model responds to different
parameters:

¢ Each Scope block contains one or more signal display areas and controls that
enable you to select the range of the signal displayed, zoom in on a portion of
the signal, and perform other useful tasks. The horizontal axis represents
time and the vertical axis represents the signal value.

¢ The Constant block labeled Set Point (at the top left of the model) sets the
desired internal temperature. Open this block and reset the value to 80
degrees. See how the indoor temperature and heating costs change. Also,
adjust the outside temperature (the Avg Outdoor Temp block) and see how it
affects the simulation.

¢ Adjust the daily temperature variation by opening the Sine Wave block
labeled Daily Temp Variation and changing the Amplitude parameter.

Running a Demo Model

What This Demo Illlustrates

This demo illustrates several tasks commonly used when you are building
models:

¢ Running the simulation involves specifying parameters and starting the
simulation with the Start command, described in “Diagnosing Simulation
Errors” on page 10-72.

® You can encapsulate complex groups of related blocks in a single block, called
a subsystem. See “Creating Subsystems” on page 4-20 for more information.

® You can customize the appearance of and design a dialog box for a block by
using the masking feature, described in detail in Chapter 12, “Creating
Masked Subsystems.” The thermo model uses the masking feature to
customize the appearance of all the Subsystem blocks that it contains.

¢ Scope blocks display graphic output much as an actual oscilloscope does.

Other Useful Demos

Other demos illustrate useful modeling concepts. You can access these demos
from the MATLAB Command Window:

1 Click the Start button on the bottom left corner of the MATLAB Command
Window.

The Start menu appears.

<) MATLAB ' = 3

File Edit WYiew Web ‘Window Help

0O D”| I B o o | | | ? |<:urrent Directary: | 1Bst-toaster R1 2perfectibintwing. ¥ | J

| =
A MATLAD
@.Toolboxes

W simulink

»
»
»
W Blockssts~ »
»
»

7 Desktop Tools

@ wieb

% Preferences...

@ Help -

| »

Start

1-7

1 e ng Started

2 Select Demos from the menu.

The MATLAB Help browser appears with the Demos pane selected.

File Edit Yiew Go Web ‘Window Help

Help Mavigatar 1ﬂ

- = | = Findinpage:l GDl
Praduct fiter: € 41| & Selected Seled...l

I Simulink Demos LI Add to Favorites |
Contents I Inclesx I Search Demos | Favao

[Getting Started with Demos = Sim]. k DemOS il

Birmulink is a tool for modeling, analyzing, and sirmulating

+-(] Features
(- General physical and mathernatical systems, including those with
-2 Autorriotive nonlinear elements and those that make use of continuous

[#-(1] Aerospace - and discrete time. =l

3 Click the Simulink entry in the Demos pane.

The entry expands to show groups of Simulink demos. Use the browser to
navigate to demos of interest. The browser displays explanations of each demo
and includes a link to the demo itself. Click on a demo link to start the demo.

1-8

Building a Model

Building a Model

This example shows you how to build a model using many of the model-building
commands and actions you will use to build your own models. The instructions
for building this model in this section are brief. All the tasks are described in
more detail in the next chapter.

The model integrates a sine wave and displays the result along with the sine
wave. The block diagram of the model looks like this.

Seope

Integrtor

To create the model, first enter simulink in the MATLAB Command Window.
On Microsoft Windows, the Simulink Library Browser appears.

e

Fe Edt Wiew Help

O =8|

Commanly Used Blocks: simink Tommocy
Used Diocks

= 1§ Sk B
] Conmmonly Used Blocks :.'.’;'.‘m,

B Contiros
B Chucorkinitie:

2 Ciucrete E
] Logic o B Oper ations] Ei Discortinuties

B Loubup Tables -
S Hhath Oper ations Dicrate
2] model verfication =
2 model-wide Lk =
3 s b Sbartes I Love ot e
2 sagnal attrbates N
0] sugnal Roubng wileh | Lockup §abbes L
g =
1 sounces Ix Mioth Cipesodnns
2] user-Defined Functons F J—
#1- 22 adduonsl Math b Discrete ®@ Madel Verific stior
w1 W Rea-Time workshop —
7 :z—k“f Lidras tise | Muodelwinde Ubiters
Seskefion =
£
mea| Prisd Subsysiema |
Ready "

1-9

1 e ng Started

1-10

On UNIX, the Simulink library window appears.

ElLibrary: simulink 10l =|

File Edit WYiew Formatb Help

v
e e =
£y FLAS INT
Soumas Sinks Continuous Disc et Discontinuities Signal Signal
Routing Attributes
- B L
+ &8 = @ = Misc
+x| [ME] [Q] W
Math Logic and Bit Lookup Uzar-Defined Model For= & Mode -\Wide
Dperations Dperations Tablkes Functions Varification Subsystams Ltilities
Blocksets & commanly Additional Math 5 Simulink Block Library 6.0
Taolboses used blocks & Dizcrete emes Copyright fe) 1990-2004
The MathWarks, Inc.

To create a new model on UNIX, select Model from the New submenu of the
Simulink library window’s File menu. To create a new model on Windows, click
the New Model button on the Library Browser’s toolbar.

=101

[FAsimulink Library Browser
File Edit Wiew Help

New model button ———p v = 1 44 I

Commonly Used Blocks: simulink/Commonly
Uszed Blocks

=1 W] Simulink
o B Commanly Used Blocks

commorl{
uzzd hlocks
¥

Simulink opens a new model window.

_|olx|
File Edit WYiew Simulation Format Tools Help
DSE&| BR[|y = Nom e BB T ®
Ready [1o02 |odets v

Building a Model

To create this model, you need to copy blocks into the model from the following
Simulink block libraries:

® Sources library (the Sine Wave block)

¢ Sinks library (the Scope block)

¢ Continuous library (the Integrator block)

¢ Signal Routing library (the Mux block)

You can copy a Sine Wave block from the Sources library, using the Library
Browser (Windows only) or the Sources library window (UNIX and Windows).

To copy the Sine Wave block from the Library Browser, first expand the
Library Browser tree to display the blocks in the Sources library. Do this by
clicking the Sources node to display the Sources library blocks. Finally, click
the Sine Wave node to select the Sine Wave block.

Here is how the Library Browser should look after you have done this.

[Fsimulink Library Browser :] 5
File Edit WYiew Help
DS =
Sine Wave: Output a sine wave: ﬂ
0[t] = &mp*Sin[2°piFreqt+Phaze] + Bias
Sine type determines the computational technique used. The parameters in the two types are related LI
Hhrew ik . o
Elil simulink, 4 = I,.'{AL’JMI FEpeating Sequence ;i SImUhnk |Ibmry
----- 2] Commonly Used Blocks
""" y Continuous Fepeating Sequence |nterpolated
----- y Discontinuities
----- y Discrete
I-| Repeating Sequence Stair
----- 2+ Logic and Bit Operations pealing 2ed

2] Lookup Tables L Sources library
----- 2| Math ;perations Signal Builder

----- 2] Model Werification o

-----] Model-wide Utilities 2 Signal Geperafor
----- 2] Ports & Subsystems
----- y Signal Attributes

..... 2+ signal Routing

.....] sirks /
----- y Sources

----- 2 User-Defined Functions —
[22 Additional Math & Discrete

- W Real-Time workshop LI
Ready

Sine Wave block

Step

n

Unifarm Fandom Mumber

1-11

1 e ng Started

Now drag a copy of the Sine Wave block from the browser and drop it in the
model window.

To copy the Sine Wave block from the Sources library window, open the Sources
window by double-clicking the Sources icon in the Simulink library window.
(On Windows, you can open the Simulink library window by right-clicking the
Simulink node in the Library Browser and then clicking the resulting Open
Library button.)

Simulink displays the Sources library window.

lLibrary: simulink/Sources 10l =|
File Edit WYiew Format Help

Model & Subsystem Inputs

2 = untitied. mat }a | simin };
In1 Gmund From File From
Workspace

Signal Generators

oooo |—| |—|
m E s

Constant _\Signal Puks Signal Buikler
gl Genermator
@ E T The Sine Wave block
Ramp ine Wavy Stap Repeating
Sequance
Chirp Signal Random Uniform Random Band-Limited
HNumber HNumber White Noise
Repeating Repeating Countar Countar
Sequance Sequance Free-Running Limited
Stair Intempolated
C‘—) 12:34 b
Clck Digital Clock

1-12

Building a Model

Now drag the Sine Wave block from the Sources window to your model window.

=10l x|

File Edit Yiew Simulation Format Tools Help

Sine Wave

Ready [1o0e | [|odets v

Copy the rest of the blocks in a similar manner from their respective libraries
into the model window. You can move a block from one place in the model
window to another by dragging the block. You can move a block a short distance
by selecting the block, then pressing the arrow keys.

With all the blocks copied into the model window, the model should look
something like this.

Sine Wawe jI> E
- b Scope
=

Integrtor

If you examine the blocks, you see an angle bracket on the right of the Sine
Wave block and two on the left of the Mux block. The > symbol pointing out of
a block is an output port; if the symbol points to a block, it is an input port. A
signal travels out of an output port and into an input port of another block
through a connecting line. When the blocks are connected, the port symbols
disappear.

1
Input port —» — «—— Output port

s
Integratar

Now it’s time to connect the blocks. Connect the Sine Wave block to the top
input port of the Mux block. Position the pointer over the output port on the

1-13

1 e ng Started

1-14

right side of the Sine Wave block. Notice that the cursor shape changes to
crosshairs.

B 1B

Sine Wawve

1 Seope

=
Integrtor

Hold down the mouse button and move the cursor to the top input port of the
Mux block.

Notice that the line is dashed while the mouse button is down and that the
cursor shape changes to double-lined crosshairs as it approaches the Mux
block.

o ———

Sine Wawve
1 Seope

=
Integrtor

Now release the mouse button. The blocks are connected. You can also connect
the line to the block by releasing the mouse button while the pointer is over the
block. If you do, the line is connected to the input port closest to the cursor’s
position.

Sine Wawve ;I E

1 Seope

=
Integrtor

If you look again at the model at the beginning of this section (see “Building a
Model” on page 1-9), you’ll notice that most of the lines connect output ports of
blocks to input ports of other blocks. However, one line connects a line to the
input port of another block. This line, called a branch line, connects the Sine
Wave output to the Integrator block, and carries the same signal that passes
from the Sine Wave block to the Mux block.

Building a Model

Drawing a branch line is slightly different from drawing the line you just drew.
To weld a connection to an existing line, follow these steps:

1 First, position the pointer on the line between the Sine Wave and the Mux
block.

Sine Wawve ;I E
=

Seope

Integrtor

2 Press and hold down the Ctrl key (or click the right mouse button). Press the
mouse button, then drag the pointer to the Integrator block’s input port or
over the Integrator block itself.

Sine Wawve E
el =
T =

Integrtor

3 Release the mouse button. Simulink draws a line between the starting point
and the Integrator block’s input port.

Integrtor

Finish making block connections. When you’re done, your model should look
something like this.

Integrtor

1-15

1 e ng Started

1-16

Now set up Simulink to run the simulation for 10 seconds. First, open the
Configuration Parameters dialog box by choosing Configuration
Parameters from the Simulation menu. On the dialog box that appears, notice

that the Stop time is set to 10.0 (its default value).

Stop time parameter

Select:

- Solver

- [ata Import/E xport

- O ptimization

- Diagnostics

Sample Time

[rata Integrity
Conversion
Connectivity
Compatibility

Model Referencing
- Hardware |mplementation
- Model Referencing

E! Configuration Parameters: untitled;/Configuration

21|
—Simulation time =l
N
Start time: [0.0 Stap time: |T0.0
—Saolver option:
Tupe: I ‘ariable-step VI Solver: I oded5 [Dormand-Prince] LI
Max step size: Iauto Relative tolerance: |1 =3¢}
Min step size: Iauto Absolute tolerance: |auto
Initial step size: Iauto -
Zern crozzing control: I Use local settings 'l
=
Ok I Lancel | Help | Apply |

Close the Configuration Parameters dialog box by clicking the OK button.

Simulink applies the parameters and closes the dialog box.

Now double-click the Scope block to open its display window. Finally, choose
Start from the Simulation menu and watch the simulation output on the

Scope.

|lemop o aBE

Building a Model

The simulation stops when it reaches the stop time specified in the
Configuration Parameters dialog box or when you choose Stop from the
Simulation menu or click the Stop button on the model window’s toolbar
(Windows only).

To save this model, choose Save from the File menu and enter a filename and
location. That file contains the description of the model.

To terminate Simulink and MATLAB, choose Exit MATLAB (on a Microsoft
Windows system) or Quit MATLAB (on a UNIX system). You can also enter
quit in the MATLAB Command Window. If you want to leave Simulink but not
terminate MATLAB, just close all Simulink windows.

This exercise shows you how to perform some commonly used model-building
tasks. These and other tasks are described in more detail in Chapter 4,
“Creating a Model.”

1-17

1 e ng Started

Setting Simulink Preferences

The MATLAB Preferences dialog box allows you to specify default settings for
some Simulink options. To display the Preferences dialog box, select
Preferences from the Simulink File menu.

references 10l =l
£ General Preferences
AT-Files
oure Cortrol ~Toolbox path caching
+Forts
olors [V Enable toolkox path cache
—HCommand YWindow £ %
l—Keyboard & Indenting [Enable toolkox path cache diagnostics
[Comrrand History Update Taalkax Path Cache
[FEditor Debugger
—Help
] ~Figure window: prirting
[Current Directory Specify how colored lines and text are sent to the printer.
—Workspace
|—aray Editor ' Use printer defaultts
_G_UIDE Always send as black and white
gilgure Copy Template
irmLdlink e Alvways send as color
t;onts
imulation rDefault behavior of the delete function
 Move files to the Recycle Bin
' Delete files permanently
Ok Cancel | Apply | Help |

1-18

Setting Simulink Preferences

Miscellaneous Preferences

Selecting Simulink in the left hand pane of the preferences dialog box displays
a Simulink Preferences pane on the right side of the dialog box.

«): Preferences 10l =l

eneral Simulink Preferences

Windowy reuse: | mixed LI
ammand YWincdow

l—Keyboard & Incerting Model Browser
ormrmand History
ditorDebugger [Show masked subsystems

[~ Show library links
Workspace ™ Browser initially visible
Dizplay

[wide nonscalar lines

[~ Show port data types

[callback tracing

Ok | Cancel | Apply | Help |

This pane allows you to specify the following Simulink preferences.

Window reuse

Specifies whether Simulink uses existing windows or opens new windows to
display a model’s subsystems (see “Window Reuse” on page 4-23).

Model Browser

Specifies whether Simulink displays the browser when you open a model and
whether the browser shows blocks imported from subsystems and the contents
of masked subsystems (see “The Model Browser” on page 9-22).

Display
Specifies whether to use thick lines to display nonscalar connections between

blocks and whether to display port data types on the block diagram (see
“Working with Signal Groups” on page 6-41).

1-19

1 e ng Started

Callback tracing

Specifies whether to display the model callbacks that Simulink invokes when
simulating a model (see “Using Callback Routines” on page 4-90).

Font Preferences

Selecting the Fonts subnode of the Simulink node in the left side of the dialog
box displays a stack of tabbed panes on the right side of the dialog box.

<} Preferences =10l x]

F-General Simulink Fonts Preferences
F-Command Window

Blocks i i
—Command History | Lines | Annotations |

- EditorDebugger ICgurierNeW LI IPIain LI |1D LI
F-Help

[Current Directory The quick brown fox jumps ower the lasy
—\Workspace dog. 1Z245675580

— Array Editor
—GUIDE

Sample

F-Figure Copy Template
E-Sirmulink
t

Simulation

QK | Cancel | Apply | Help |

The panes allow you to specify your preferred fonts for block and line labels and
model annotations, respectively.

1-20

Setting Simulink Preferences

Simulation Preferences

Selecting the Simulation node beneath the Simulink node in the left side of the
dialog box displays a button to start the Model Explorer (see “The Model

Explorer” on page 9-2).

«): Preferences

[E-General
':gAT-Files
ource Cortrol

+Forts
olors
—HCommand YWindow

l—Keyboard & Incerting

—Command Histary

[FEditor Debugger

—Help

ek

—iCurrent Directary

—Workspace

r—&rray Editar

—GUIDE

g:igure Copy Template
inulink

orts

Simulink Simulation Preferences

launch the Simulink model explorer.

Ok | Cancel | Apply | Help |

Simulation preferences can be accessed only through the "Configuration
Preferences" node in the Simulink model explorer. Click the button below to

=101

Launch model explorer |

Use the Model Explorer to set your simulation preferences.

1-21

1 e ng Started

1-22

How Simulink Works

The following sections explain how Simulink models and simulates dynamic systems. This
information can be helpful in creating models and interpreting simulation results.

Introduction (p. 2-2) Brief overview of Simulink.
Modeling Dynamic Systems (p. 2-3) How Simulink models a dynamic system.
Simulating Dynamic Systems (p. 2-13) How Simulink simulates a dynamic system.

Modeling and Simulating Discrete How Simulink models and simulates discrete systems.
Systems (p. 2-31)

2 How Simulink Works

2-2

Introduction

Simulink is a software package that enables you to model, simulate, and
analyze systems whose outputs change over time. Such systems are often
referred to as dynamic systems. Simulink can be used to explore the behavior
of a wide range of real-world dynamic systems, including electrical circuits,
shock absorbers, braking systems, and many other electrical, mechanical, and
thermodynamic systems. This section explains how Simulink works.

Simulating a dynamic system is a two-step process with Simulink. First, a user
creates a block diagram, using the Simulink model editor, that graphically
depicts time-dependent mathematical relationships among the system’s
inputs, states, and outputs. The user then commands Simulink to simulate the
system represented by the model from a specified start time to a specified stop
time.

Modeling Dynamic Systems

Modeling Dynamic Systems

A Simulink block diagram model is a graphical representation of a
mathematical model of a dynamic system. A mathematical model of a dynamic
system is described by a set of equations. The mathematical equations
described by a block diagram model are known as algebraic, differential, and/or
difference equations.

Block Diagram Semantics

A classic block diagram model of a dynamic system graphically consists of
blocks and lines (signals). The history of these block diagram model is derived
from engineering areas such as Feedback Control Theory and Signal
Processing. A block within a block diagram defines a dynamic system in itself.
The relationships between each elementary dynamic system in a block
diagram are illustrated by the use of signals connecting the blocks. Collectively
the blocks and lines in a block diagram describe an overall dynamic system.

Simulink extends these classic block diagram models by introducing the notion
of two classes of blocks, nonvirtual block and virtual blocks. Nonvirtual blocks
represent elementary systems. A virtual block is provided for graphical
organizational convenience and plays no role in the definition of the system of
equations described by the block diagram model. Examples of virtual blocks are
the Bus Creator and Bus Selector which are used to reduce block diagram
clutter by managing groups of signals as a “bundle.” You can use virtual blocks
to improve the readability of your models.

In general, block and lines can be used to describe many “models of
computations.” One example would be a flow chart. A flow chart consists of
blocks and lines, but one cannot describe general dynamic systems using flow
chart semantics.

The term “time-based block diagram” is used to distinguish block diagrams
that describe dynamic systems from that of other forms of block diagrams. In
Simulink, we use the term block diagram (or model) to refer to a time-based
block diagram unless the context requires explicit distinction.

To summarize the meaning of time-based block diagrams:

¢ Simulink block diagrams define time-based relationships between signals
and state variables. The solution of a block diagram is obtained by
evaluating these relationships over time, where time starts at a user

2-3

2 How Simulink Works

specified “start time” and ends at a user specified “stop time.” Each
evaluation of these relationships is referred to as a time step.

¢ Signals represent quantities that change over time and are defined for all
points in time between the block diagram’s start and stop time.

¢ The relationships between signals and state variables are defined by a set of
equations represented by blocks. Each block consists of a set of equations
(block methods). These equations define a relationship between the input
signals, output signals and the state variables. Inherent in the definition of
a equation is the notion of parameters, which are the coefficients found
within the equation.

Creating Models

Simulink provides a graphical editor that allows you to create and connect
instances of block types (see Chapter 4, “Creating a Model”) selected from
libraries of block types (see the “Block Reference” in the online Simulink Help)
via a library browser. Simulink provides libraries of blocks representing
elementary systems that can be used a building blocks. The blocks supplied
with Simulink are called built-in blocks. Simulink users can also create their
own block types and use the Simulink editor to create instances of them in a
diagram. Customer-defined blocks are called custom blocks.

Time

Time is an inherit component of block diagrams in that the results of a block
diagram simulation change with time. Put another way, a block diagram
represents the instantaneous behavior of a dynamic system. Determining a
system’s behavior over time thus entails repeatedly executing the model at
intervals, called time steps, from the start of the time span to the end of the
time span. Simulink refers to the repeated execution of a model at successive
time steps as simulating the system that the model represents. It is possible to
simulate a system manually, i.e., to execute its model manually. However, this
is unnecessary as the Simulink engine performs this task automatically on
command from the user.

States

Typically the current values of some system, and hence model, outputs are
functions of the previous values of temporal variables. Such variables are

2-4

Modeling Dynamic Systems

called states. Computing a model’s outputs from a block diagram hence entails
saving the value of states at the current time step for use in computing the
outputs at a subsequent time step. Simulink performs this task during
simulation for models that define states.

Two types of states can occur in a Simulink model: discrete and continuous
states. A continuous state changes continuously. Examples of continuous
states are the position and speed of a car. A discrete state is an approximation
of a continuous state where the state is updated (recomputed) using finite
(periodic or aperiodic) intervals. An example of a discrete state would be the
position of a car shown on a digital odometer where it is updated every second
as opposed to continuously. In the limit, as the discrete state time interval
approaches zero, a discrete state becomes equivalent to a continuous state.

Blocks implicitly define a model’s states. In particular, a block that needs some
or all of its previous outputs to compute its current outputs implicitly defines a
set of states that need to be saved between time steps. Such a block is said to
have states.

The following is a graphical representation of a block that has states.

x
U P (states) >y
(input) (output)

Blocks that define continuous states include the following standard Simulink
blocks:

¢ Integrator
* State-Space
¢ Transfer Fen

e Zero-Pole

The total number of a model’s states is the sum of all the states defined by all
its blocks. Determining the number of states in a diagram requires parsing the
diagram to determine the types of blocks that it contains and then aggregating
the number of states defined by each instance of a block type that defines
states. Simulink performs this task during the Compilation phase of a
simulation.

2-5

2 How Simulink Works

Continuous States

Computing a continuous state entails knowing its rate of change, or derivative.
Since the rate of change of a continuous state typically itself changes
continuously (i.e., is itself a state), computing the value of a continuous state
at the current time step entails integration of its derivative from the start of a
simulation.Thus modeling a continuous state entails representing the
operation of integration and the process of computing the state’s derivative at
each point in time. Simulink block diagrams use Integrator blocks to indicate
integration and a chain of operator blocks connected to the integrator block to
represent the method for computing the state’s derivative. The chain of block’s
connected to the Integrator’s is the graphical counterpart to an ordinary
differential equation (ODE).

In general, excluding simple dynamic systems, analytical methods do not exist
for integrating the states of real-world dynamic systems represented by
ordinary differential equations. Integrating the states requires the use of
numerical methods called ODE solvers. These various methods trade
computational accuracy for computational workload. Simulink comes with
computerized implementations of the most common ODE integration methods
and allows a user to determine which it uses to integrate states represented by
Integrator blocks when simulating a system.

Computing the value of a continuous state at the current time step entails
integrating its values from the start of the simulation. The accuracy of
numerical integration in turn depends on the size of the intervals between time
steps. In general, the smaller the time step, the more accurate the simulation.
Some ODE solvers, called variable time step solvers, can automatically vary
the size of the time step, based on the rate of change of the state, to achieve a
specified level of accuracy over the course of a simulation. Simulink allows the
user to specify the size of the time step in the case of fixed-step solvers or allow
the solver to determine the step size in the case of variable-step solvers. To
minimize the computation workload, the variable-step solver chooses the
largest step size consistent with achieving an overall level of precision specified
by the user for the most rapidly changing model state. This ensures that all
model states are computed to the accuracy specified by the user.

Discrete States

Computing a discrete state requires knowing the relationship between the
current time and its value at the time at which it previously changed value.
Simulink refers to this relationship as the state’s update function. A discrete

2-6

Modeling Dynamic Systems

state depends not only on its value at the previous time step but also on the
values of a model’s inputs. Modeling a discrete state thus entails modeling the
state’s dependency on the systems’ inputs at the previous time step. Simulink
block diagrams use specific types of blocks, called discrete blocks, to specify
update functions and chains of blocks connected to the inputs of the block’s to
model the state’s dependency on system inputs.

As with continuous states, discrete states set a constraint on the simulation
time step size. Specifically a step size must be chosen that ensure that all the
sample times of the model’s states are hit. Simulink assigns this task to a
component of the Simulink system called a discrete solver. Simulink provides
two discrete solvers: a fixed-step discrete solver and a variable-step discrete
solver. The fixed-step discrete solver determines a fixed step size that hits all
the sample times of all the model’s discrete states, regardless of whether the
states actually change value at the sample time hits. By contrast, the
variable-step discrete solver varies the step size to ensure that sample time
hits occur only at times when the states change value.

Modeling Hybrid Systems

A hybrid system is a a system that has both discrete and continuous states
Strictly speaking a hybrid model is identified as having continuous and
discrete sample times from which it follows that the model will have
continuous and discrete states. Solving a model of such a system entails
choosing a step size that satisfies both the precision constraint on the
continuous state integration and the sample time hit constraint on the discrete
states. Simulink meets this requirement by passing the next sample time hit
as determined by the discrete solver as an additional constraint on the
continuous solver. The continuous solver must choose a step size that advances
the simulation up to but not beyond the time of the next sample time hit. The
continuous solver can take a time step short of the next sample time hit to meet
its accuracy constraint but it cannot take a step beyond the next sample time
hit even if its accuracy constraint allows it to.

Block Parameters

Key properties of many standard blocks are parameterized. For example, the
Constant value of the Simulink Constant block is a parameter. Each
parameterized block has a block dialog that lets you set the values of the
parameters. You can use MATLAB expressions to specify parameter values.
Simulink evaluates the expressions before running a simulation. You can

2-7

2 How Simulink Works

change the values of parameters during a simulation. This allows you to
determine interactively the most suitable value for a parameter.

A parameterized block effectively represents a family of similar blocks. For
example, when creating a model, you can set the Constant value parameter of
each instance of the Constant block separately so that each instance behaves
differently. Because it allows each standard block to represent a family of
blocks, block parameterization greatly increases the modeling power of the
standard Simulink libraries.

Each time you change parameters, you change the meaning of the model.
Simulink lets you modify the parameter values during execution of your model.
For example, you can pause simulation, change parameter values, and
continue simulation. It should be pointed out that parameter changes do not
immediately occur, but are queued up and then applied at the start of the next
time step during model execution. Returning to our example of the constant
block, the function it defines is signal(t) = ConstantValue for all time. If we
were to allow the constant value to be changed immediately, then the solution
at the point in time at which the change occurred would be invalid, thus we
must queue the change for processing on the next time step.

Tunable Parameters

Many block parameters are tunable. A tunable parameter is a parameter whose
value can change while Simulink is executing a model. For example, the gain
parameter of the Gain block is tunable. You can alter the block’s gain while a
simulation is running. If a parameter is not tunable and the simulation is
running, Simulink disables the dialog box control that sets the parameter.
Simulink allows you to specify that all parameters in your model are
nontunable except for those that you specify. This can speed up execution of
large models and enable generation of faster code from your model. See “Model
Parameter Configuration Dialog Box” on page 10-47 for more information.

Block Sample Times

Every Simulink block is considered to have a sample time, even continuous
blocks (e.g., blocks that define continuous states, such as the Integrator block)
and blocks that do not define states, such as the Gain block. Discrete blocks
allows you to specify their sample times via a Sample Time parameter.
Continuous blocks are considered to have an infinitesimal sample time called
a continuous sample time. A block that is neither discrete or continuous is said

2-8

Modeling Dynamic Systems

to have an implicit sample time that it inherits from its inputs. The implicit
sample time is continuous if any of the block’s inputs are continuous.
Otherwise, the implicit sample time is discrete. An implicit discrete sample
time is equal to the shortest input sample time if all the input sample times are
integer multiples of the shortest time. Otherwise, the implicit sample time is
equal to the fundamental sample time of the inputs, where the fundamental
sample time of a set of sample times is defined as the greatest integer divisor
of the set of sample times.

Simulink can optionally color code a block diagram to indicate the sample times
of the blocks it contains, e.g., black (continuous), magenta (constant), yellow
(hybrid), red (fastest discrete), and so on. See “Mixed Continuous and Discrete
Systems” on page 2-40 for more information.

Custom Blocks

Simulink allows you to create libraries of custom blocks that you can then use
in your models. You can create a custom block either graphically or
programmatically. To create a custom block graphically, you draw a block
diagram representing the block’s behavior, wrap this diagram in an instance of
the Simulink Subsystem block, and provide the block with a parameter dialog,
using the Simulink block mask facility. To create a block programmatically,
you create an M-file or a MEX-file that contains the block’s system functions
(see Writing S-Functions in the online Help for Simulink). The resulting file is
called an S-function. You then associate the S-function with instances of the
Simulink S-Function block in your model. You can add a parameter dialog to
your S-Function block by wrapping it in a Subsystem block and adding the
parameter dialog to the Subsystem block.

Systems and Subsystems

A Simulink block diagram can consist of layers. Each layer is defined by a
subsystem. A subsystem is part of the overall block diagram and ideally has no
impact on the meaning of the block diagram. Subsystems are provided
primarily to help in the organization aspects a block diagram. Subsystem do
not define a separate block diagram.

Simulink differentiates between two different types of subsystems virtual and
nonvirtual subsystems. The main difference is that nonvirtual subsystems
provide the ability to control when the contents of the subsystem are evaluated.

2-9

2 How Simulink Works

2-10

Flattening the Model Hierarchy

While preparing a model for execution, Simulink generates internal “systems”
that are collections of block methods (equations) that are evaluated together.
The semantics of time-based block diagrams doesn’t require creation of these
systems. Simulink creates these internal systems as a means to manage the
execution of the model. Roughly speaking, there will be one system for the
top-level block diagram window which is referred to as the root system, and
several lower-level system derived from the nonvirtual subsystem and other
elements within the block diagram. You will see these systems within the
Simulink Debugger. The act of creating these “internal” systems is often
referred to as flattening the model hierarchy.

Conditionally Executed Subsystems

You can create conditionally executed subsystems that are executed only when
a transition occurs on a triggering, function-call, action, or enabling input (see
“Creating Conditionally Executed Subsystems” on page 4-26).

Conditionally executed subsystems are atomic. Unconditionally executed
subsystems are virtual by default. You can, however, designate an
unconditionally executed subsystem as atomic. This is useful if you need to
ensure that the equations defined by a subsystem are evaluated “together” as
a unit.

Signals

Simulink uses the term signal to refer to a time varying quantity that has
values at all points in time. Simulink allows you to specify a wide range of
signal attributes, including signal name, data type (e.g., 8-bit, 16-bit, or 32-bit
integer), numeric type (real or complex), and dimensionality (one-dimensional
or two-dimensional array). Many blocks can accept or output signals of any
data or numeric type and dimensionality. Others impose restrictions on the
attributes of the signals they can handle.

On the block diagram, you will find that the signals are represented with lines
that have an arrow head. The source of the signal corresponds to the block that
writes to the signal during evaluation of its block methods (equations). The
destinations of the signal are blocks that read the signal during the evaluation
of its block methods (equations). A good analogy of the meaning of a signal is to
consider a classroom. The teacher is the one responsible for writing on the
white board and the students read what is written on the white board when

Modeling Dynamic Systems

they choose to. This is also true of Simulink signals, a reader of the signal (a
block method) can choose to read the signal as frequently or infrequently as so
desired.

Block Methods

Blocks represent multiple equations. These equations are represented as block
methods within Simulink. These block methods are evaluated (executed)
during the execution of a block diagram. The evaluation of these block methods
is performed within a simulation loop, where each cycle through the simulation
loop represent evaluation of the block diagram at a given point in time.

Method Types

Simulink assigns names to the types of functions performed by block methods.
Common method types include:

¢ Qutputs

Computes the outputs of a block given its inputs at the current time step and
its states at the previous time step.

¢ Update

Computes the value of the block’s discrete states at the current time step,
given its inputs at the current time step and its discrete states at the
previous time step.

® Derivatives

Computes the derivatives of the block’s continuous states at the current time
step, given the block’s inputs and the values of the states at the previous time
step.

Method Naming Convention

Block methods perform the same types of operations in different ways for
different types of blocks. The Simulink user interface and documentation uses
dot notation to indicate the specific function performed by a block method:

BlockType.MethodType

For example, Simulink refers to the method that computes the outputs of a
Gain block as

Gain.Outputs

2-11

2 How Simulink Works

The Simulink debugger takes the naming convention one step further and uses
the instance name of a block to specify both the method type and the block
instance on which the method is being invoked during simulation, e.g.,

g1.0utputs

Model Methods

In addition to block methods, Simulink also provides a set of methods that
compute the model’s properties and its outputs. Simulink similarly invokes
these methods during simulation to determine a model’s properties and its
outputs. The model methods generally perform their tasks by invoking block
methods of the same type. For example, the model Outputs method invokes the
Outputs methods of the blocks that it contains in the order specified by the
model to compute its outputs. The model Derivatives method similarly invokes
the Derivatives methods of the blocks that it contains to determine the
derivatives of its states.

2-12

Simulating Dynamic Systems

Simulating Dynamic Systems

Simulating a dynamic system refers to the process of computing a system’s
states and outputs over a span of time, using information provided by the
system’s model. Simulink simulates a system when you choose Start from the
model editor’s Simulation menu, with the system’s model open.

A Simulink component called the Simulink Engine responds to a Start
command, performing the following steps.

Model Compilation
First, the Simulink engine invokes the model compiler. The model compiler

converts the model to an executable form, a process called compilation. In
particular, the compiler

¢ Evaluates the model’s block parameter expressions to determine their
values.

® Determines signal attributes, e.g., name, data type, numeric type, and
dimensionality, not explicitly specified by the model and checks that each
block can accept the signals connected to its inputs.

¢ Simulink uses a process called attribute propagation to determine
unspecified attributes. This process entails propagating the attributes of a
source signal to the inputs of the blocks that it drives.

¢ Performs block reduction optimizations.

¢ Flattens the model hierarchy by replacing virtual subsystems with the
blocks that they contain (see “Solvers” on page 2-17).

® Sorts the blocks into the order in which they need to be executed during the
execution phase (see “Solvers” on page 2-17).

¢ Determines the sample times of all blocks in the model whose sample times
you did not explicitly specify.

Determining Block Update Order

During a simulation, Simulink updates the states and outputs of a model’s
blocks once per time step. The order in which the blocks are updated is
therefore critical to the validity of the results. In particular, if a block’s outputs
are a function of its inputs at the current time step, the block must be updated
after the blocks that drive its inputs. Otherwise, the block’s outputs will be

2-13

2 How Simulink Works

invalid. Simulink sorts the blocks into the correct order during the model
initialization phase.

Direct-Feedthrough Ports. In order to create a valid update ordering, Simulink
categorizes a block’s input ports according to the relationship of outputs to
inputs. An input port whose current value determines the current value of one
of the block’s outputs is called a direct-feedthrough port. Examples of blocks
that have direct-feedthrough ports include the Gain, Product, and Sum blocks.
Examples of blocks that have non-direct-feedthrough inputs include the
Integrator block (its output is a function purely of its state), the Constant block
(it does not have an input), and the Memory block (its output is dependent on
its input in the previous time step).

Block Sorting Rules. Simulink uses the following basic update rules to sort the
blocks:

¢ Each block must be updated before any of the blocks whose
direct-feedthrough ports it drives.

This rule ensures that the direct-feedthrough inputs to blocks will be valid
when the blocks are updated.

¢ Blocks that do not have direct feedthrough inputs can be updated in any
order as long as they are updated before any blocks whose direct-feedthrough
inputs they drive.

Putting all blocks that do not have direct-feedthrough ports at the head of
the update list in any order satisfies this rule. It thus allows Simulink to
ignore these blocks during the sorting process.

The result of applying these rules is an update list in which blocks without
direct feedthrough ports appear at the head of the list in no particular order
followed by blocks with direct-feedthrough ports in the order required to supply
valid inputs to the blocks they drive.

During the sorting process, Simulink checks for and flags the occurrence of
algebraic loops, that is, signal loops in which a direct-feedthrough output of a
block is connected directly or indirectly to the corresponding
direct-feedthrough input of the block. Such loops seemingly create a deadlock
condition, because Simulink needs the value of the direct-feedthrough input to
compute the output. However, an algebraic loop can represent a set of
simultaneous algebraic equations (hence the name) where the block’s input
and output are the unknowns. Further, these equations can have valid

2-14

Simulating Dynamic Systems

solutions at each time step. Accordingly, Simulink assumes that loops
involving direct-feedthrough ports do, in fact, represent a solvable set of
algebraic equations and attempts to solve them each time the block is updated

during a simulation. For more information, see “Algebraic Loops” on page 2-24.

Link Phase

In this phase, the Simulink Engine allocates memory needed for working areas
(signals, states, and run-time parameters) for execution of the block diagram.
It also allocates and initializes memory for data structures that store run-time
information for each block. For built-in blocks, the principal run-time data
structure for a block is called the SimBlock. It stores pointers to a block’s input
and output buffers and state and work vectors.

Method Execution Lists

In the Link phase, the Simulink engine also creates method execution lists.
These lists list the most efficient order in which to execute a model’s block
methods to compute its outputs. Simulink uses the sorted lists generated
during the Compile phase to construct the method execution lists.

Block Priorities

Simulink allows you to assign update priorities to blocks (see “Assigning Block
Priorities” on page 5-20). Simulink executes the output methods of higher
priority blocks before those of lower priority blocks. Simulink honors the
priorities only if they are consistent with its block sorting rules.

Simulation Loop Phase

The simulation now enters the simulation loop phase. In this phase, the
Simulink engine successively computes the states and outputs of the system at
intervals from the simulation start time to the finish time, using information
provided by the model. The successive time points at which the states and
outputs are computed are called time steps. The length of time between steps
is called the step size. The step size depends on the type of solver (see “Solvers”
on page 2-17) used to compute the system’s continuous states, the system’s
fundamental sample time (see “Modeling and Simulating Discrete Systems” on
page 2-31), and whether the system’s continuous states have discontinuities
(see “Zero-Crossing Detection” on page 2-19).

2-15

2 How Simulink Works

The Simulation Loop phase has two subphases: the Loop Initialization phase
and the Loop Iteration phase. The initialization phase occurs once, at the start
of the loop. The iteration phase is repeated once per time step from the
simulation start time to the simulation stop time.

At the start of the simulation, the model specifies the initial states and outputs
of the system to be simulated. At each step, Simulink computes new values for
the system’s inputs, states, and outputs and updates the model to reflect the
computed values. At the end of the simulation, the model reflects the final
values of the system’s inputs, states, and outputs. Simulink provides data
display and logging blocks. You can display and/or log intermediate results by
including these blocks in your model.

Loop lteration
At each time step, the Simulink Engine

1 Computes the model’s outputs.

The Simulink Engine initiates this step by invoking the Simulink model
Outputs method.The model Outputs method in turn invokes the model
system Outputs method, which invokes the Outputs methods of the blocks
that the model contains in the order specified by the Outputs method
execution lists generated in the Link phase of the simulation (see “Solvers”
on page 2-17).

The system Outputs method passes the following arguments to each block
Outputs method: a pointer to the block’s data structure and to its SimBlock
structure. The SimBlock data structures point to information that the
Outputs method needs to compute the block’s outputs, including the location
of its input buffers and its output buffers.

2 Computes the model’s states.

The Simulink Engine computes a model’s states by invoking a solver. Which
solver it invokes depends on whether the model has no states, only discrete
states, only continuous states, or both continuous and discrete states.

If the model has only discrete states, the Simulink Engine invokes the
discrete solver selected by the user. The solver computes the size of the time
step needed to hit the model’s sample times. It then invokes the Update

2-16

Simulating Dynamic Systems

method of the model. The model Update method invokes the Update method
of its system, which invokes the Update methods of each of the blocks that
the system contains in the order specified by the Update method lists
generated in the Link phase.

If the model has only continuous states, the Simulink Engine invokes the
continuous solver specified by the model. Depending on the solver, the solver
either in turn calls the Derivatives method of the model once or enters a
subcycle of minor time steps where the solver repeatedly calls the model’s
Outputs methods and Derivatives methods to compute the model’s outputs
and derivatives at successive intervals within the major time step. This is
done to increase the accuracy of the state computation. The model Outputs
method and Derivatives methods in turn invoke their corresponding system
methods, which invoke the block Outputs and Derivatives in the order
specified by the Outputs and Derivatives methods execution lists generated
in the Link phase.

3 Optionally checks for discontinuities in the continuous states of blocks.

Simulink uses a technique called zero-crossing detection to detect
discontinuities in continuous states. See “Zero-Crossing Detection” on
page 2-19 for more information.

4 Computes the time for the next time step.

Simulink repeats steps 1 through 4 until the simulation stop time is reached.

Solvers

Simulink simulates a dynamic system by computing its states at successive
time steps over a specified time span, using information provided by the model.
The process of computing the successive states of a system from its model is
known as solving the model. No single method of solving a model suffices for all
systems. Accordingly, Simulink provides a set of programs, known as solvers,
that each embody a particular approach to solving a model. The Configuration
Parameters dialog box allows you to choose the solver most suitable for your
model (see “Choosing a Solver Type” on page 10-7).

2-17

2 How Simulink Works

Fixed-Step Solvers Versus Variable-Step Solvers
Simulink solvers fall into two basic categories: fixed-step and variable-step.

Fixed-step solvers solve the model at regular time intervals from the beginning
to the end of the simulation. The size of the interval is known as the step size.
You can specify the step size or let the solver choose the step size. Generally,
decreasing the step size increases the accuracy of the results while increasing
the time required to simulate the system.

Variable-step solvers vary the step size during the simulation, reducing the
step size to increase accuracy when a model’s states are changing rapidly and
increasing the step size to avoid taking unnecessary steps when the model’s
states are changing slowly. Computing the step size adds to the computational
overhead at each step but can reduce the total number of steps, and hence
simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states.

Continuous Versus Discrete Solvers
Simulink provides both continuous and discrete solvers.

Continuous solvers use numerical integration to compute a model’s continuous
states at the current time step from the states at previous time steps and the
state derivatives. Continuous solvers rely on the model’s blocks to compute the
values of the model’s discrete states at each time step.

Mathematicians have developed a wide variety of numerical integration
techniques for solving the ordinary differential equations (ODEs) that
represent the continuous states of dynamic systems. Simulink provides an
extensive set of fixed-step and variable-step continuous solvers, each
implementing a specific ODE solution method (see “Choosing a Solver Type” on
page 10-7).

Discrete solvers exist primarily to solve purely discrete models. They compute
the next simulation time step for a model and nothing else. They do not
compute continuous states and they rely on the model’s blocks to update the
model’s discrete states.

2-18

Simulating Dynamic Systems

Note You can use a continuous solver, but not a discrete solver, to solve a
model that contains both continuous and discrete states. This is because a
discrete solver does not handle continuous states. If you select a discrete
solver for a continuous model, Simulink disregards your selection and uses a
continuous solver instead when solving the model.

Simulink provides two discrete solvers, a fixed-step discrete solver and a
variable-step discrete solver. The fixed-step solver by default chooses a step
size and hence simulation rate fast enough to track state changes in the fastest
block in your model. The variable-step solver adjusts the simulation step size
to keep pace with the actual rate of discrete state changes in your model. This
can avoid unnecessary steps and hence shorten simulation time for multirate
models (see “Determining Step Size for Discrete Systems” on page 2-36 for
more information).

Minor Time Steps

Some continuous solvers subdivide the simulation time span into major and
minor time steps, where a minor time step represents a subdivision of the
major time step. The solver produces a result at each major time step. It uses
results at the minor time steps to improve the accuracy of the result at the
major time step.

Zero-Crossing Detection

When simulating a dynamic system, Simulink checks for discontinuities in the
system’s state variables at each time step, using a technique known as
zero-crossing detection. If Simulink detects a discontinuity within the current
time step, it determines the precise time at which the discontinuity occurs and
takes additional time steps before and after the discontinuity. This section
explains why zero-crossing detection is important and how it works.

Discontinuities in state variables often coincide with significant events in the
evolution of a dynamic system. For example, the instant when a bouncing ball
hits the floor coincides with a discontinuity in its position. Because
discontinuities often indicate a significant change in a dynamic system, it is
important to simulate points of discontinuity precisely. Otherwise, a
simulation could lead to false conclusions about the behavior of the system
under investigation. Consider, for example, a simulation of a bouncing ball. If

2-19

2 How Simulink Works

the point at which the ball hits the floor occurs between simulation steps, the
simulated ball appears to reverse position in midair. This might lead an
investigator to false conclusions about the physics of the bouncing ball.

To avoid such misleading conclusions, it is important that simulation steps
occur at points of discontinuity. A simulator that relies purely on solvers to
determine simulation times cannot efficiently meet this requirement.
Consider, for example, a fixed-step solver. A fixed-step solver computes the
values of state variables at integral multiples of a fixed step size. However,
there is no guarantee that a point of discontinuity will occur at an integral
multiple of the step size. You could reduce the step size to increase the
probability of hitting a discontinuity, but this would greatly increase the
execution time.

A variable-step solver appears to offer a solution. A variable-step solver adjusts
the step size dynamically, increasing the step size when a variable is changing
slowly and decreasing the step size when the variable changes rapidly. Around
a discontinuity, a variable changes extremely rapidly. Thus, in theory, a
variable-step solver should be able to hit a discontinuity precisely. The problem
is that to locate a discontinuity accurately, a variable-step solver must again
take many small steps, greatly slowing down the simulation.

How Zero-Crossing Detection Works

Simulink uses a technique known as zero-crossing detection to address this
problem. With this technique, a block can register a set of zero-crossing
variables with Simulink, each of which is a function of a state variable that can
have a discontinuity. The zero-crossing function passes through zero from a
positive or negative value when the corresponding discontinuity occurs. At the
end of each simulation step, Simulink asks each block that has registered
zero-crossing variables to update the variables. Simulink then checks whether
any variable has changed sign since the last step. Such a change indicates that
a discontinuity occurred in the current time step.

If any zero crossings are detected, Simulink interpolates between the previous
and current values of each variable that changed sign to estimate the times of
the zero crossings (e.g., discontinuities). Simulink then steps up to and over
each zero crossing in turn. In this way, Simulink avoids simulating exactly at
the discontinuity, where the value of the state variable might be undefined.

Zero-crossing detection enables Simulink to simulate discontinuities
accurately without resorting to excessively small step sizes. Many Simulink

2-20

Simulating Dynamic Systems

blocks support zero-crossing detection. The result is fast and accurate
simulation of all systems, including systems with discontinuities.

Implementation Details

An example of a Simulink block that uses zero crossings is the Saturation
block. Zero crossings detect these state events in the Saturation block:

¢ The input signal reaches the upper limit.
® The input signal leaves the upper limit.
¢ The input signal reaches the lower limit.

® The input signal leaves the lower limit.

Simulink blocks that define their own state events are considered to have
intrinsic zero crossings. If you need explicit notification of a zero-crossing event,
use the Hit Crossing block. See “Blocks with Zero Crossings” on page 2-23 for
a list of blocks that incorporate zero crossings.

The detection of a state event depends on the construction of an internal
zero-crossing signal. This signal is not accessible by the block diagram. For the
Saturation block, the signal that is used to detect zero crossings for the upper
limit is zcSignal = UpperLimit — u, where u is the input signal.

Zero-crossing signals have a direction attribute, which can have these values:
® rising — A zero crossing occurs when a signal rises to or through zero, or when

a signal leaves zero and becomes positive.

® falling — A zero crossing occurs when a signal falls to or through zero, or
when a signal leaves zero and becomes negative.

® cither — A zero crossing occurs if either a rising or falling condition occurs.

For the Saturation block’s upper limit, the direction of the zero crossing is
either. This enables the entering and leaving saturation events to be detected
using the same zero-crossing signal.

If the error tolerances are too large, it is possible for Simulink to fail to detect
a zero crossing. For example, if a zero crossing occurs within a time step, but
the values at the beginning and end of the step do not indicate a sign change,
the solver steps over the crossing without detecting it.

The following figure shows a signal that crosses zero. In the first instance, the
integrator steps over the event. In the second, the solver detects the event.

2-21

2 How Simulink Works

WA

V%

not detected
detected

If you suspect this is happening, tighten the error tolerances to ensure that the
solver takes small enough steps. For more information, see “Maximum order”
on page 10-35.

Note Using the Refine output option (see “Output options” on page 10-42)
does not help locate the missed zero crossings. You should alter the maximum
step size or output times.

Caveat

It is possible to create models that exhibit high-frequency fluctuations about a
discontinuity (chattering). Such systems typically are not physically realizable;
a massless spring, for example. Because chattering causes repeated detection
of zero crossings, the step sizes of the simulation become very small, essentially
halting the simulation.

If you suspect that this behavior applies to your model, you can use the Zero
crossing control option on the Solver pane of the Configuration Parameters
dialog box (see “Zero crossing control” on page 10-33) to disable zero-crossing
detection. Although disabling zero-crossing detection can alleviate the
symptoms of this problem, you no longer benefit from the increased accuracy
that zero-crossing detection provides. A better solution is to try to identify the
source of the underlying problem in the model.

2-22

Simulating Dynamic Systems

Blocks with Zero Crossings

The following table lists blocks that use zero crossings and explains how the
blocks use the zero crossings:

Block Description of Zero Crossing

Abs One: to detect when the input signal crosses zero in either
the rising or falling direction.

Backlash Two: one to detect when the upper threshold is engaged,
and one to detect when the lower threshold is engaged.

Dead Zone Two: one to detect when the dead zone is entered (the input
signal minus the lower limit), and one to detect when the
dead zone is exited (the input signal minus the upper
limit).

Hit One: to detect when the input crosses the threshold.

Crossing

Integrator If the reset port is present, to detect when a reset occurs. If
the output is limited, there are three zero crossings: one to
detect when the upper saturation limit is reached, one to
detect when the lower saturation limit is reached, and one
to detect when saturation is left.

MinMax One: for each element of the output vector, to detect when
an input signal is the new minimum or maximum.

Relay One: if the relay is off, to detect the switch on point. If the
relay is on, to detect the switch off point.

Relational One: to detect when the output changes.

Operator

Saturation Two: one to detect when the upper limit is reached or left,
and one to detect when the lower limit is reached or left.

Sign One: to detect when the input crosses through zero.

Step One: to detect the step time.

2-23

2 How Simulink Works

2-24

Block Description of Zero Crossing (Continued)

Subsystem For conditionally executed subsystems: one for the enable
port if present, and one for the trigger port, if present.

Switch One: to detect when the switch condition occurs.

Algebraic Loops

Some Simulink blocks have input ports with direct feedthrough. This means
that the output of these blocks cannot be computed without knowing the values
of the signals entering the blocks at these input ports. Some examples of blocks
with direct feedthrough inputs are as follows:

¢ The Math Function block

¢ The Gain block

¢ The Integrator block’s initial condition ports

¢ The Product block

¢ The State-Space block when there is a nonzero D matrix

® The Sum block

e The Transfer Fen block when the numerator and denominator are of the
same order

® The Zero-Pole block when there are as many zeros as poles

An algebraic loop generally occurs when an input port with direct feedthrough
is driven by the output of the same block, either directly, or by a feedback path
through other blocks with direct feedthrough. An example of an algebraic loop
is this simple scalar loop.

u
— .+ 2
L

Mathematically, this loop implies that the output of the Sum block is an
algebraic state z constrained to equal the first input # minus z (i.e. z = u - 2).
The solution of this simple loop is z = u /2, but most algebraic loops cannot be
solved by inspection.

Simulating Dynamic Systems

It is easy to create vector algebraic loops with multiple algebraic state variables
z1, 22, etc., as shown in this model.

=+
Ll
z1 zi+zl-1 Solve 21 ljl
>+ i e >
- Algebraic Constraint Lrisplay z1
Sum

Ll
f
I+ 6] =0 °

1 - — Algebraic Constraint1 Dizplay =2

h 4

h 4

k.

Constant Sum1

The Algebraic Constraint block is a convenient way to model algebraic
equations and specify initial guesses. The Algebraic Constraint block
constrains its input signal F(z) to zero and outputs an algebraic state z. This
block outputs the value necessary to produce a zero at the input. The output
must affect the input through some feedback path. You can provide an initial
guess of the algebraic state value in the block’s dialog box to improve algebraic
loop solver efficiency.

A scalar algebraic loop represents a scalar algebraic equation or constraint of
the form F(z) = 0, where z is the output of one of the blocks in the loop and the
function F consists of the feedback path through the other blocks in the loop to
the input of the block. In the simple one-block example shown on the previous
page, F(z) =z — (u - z). In the vector loop example shown above, the equations
are

22+2z1-1=0
22-2z1-1=0

Algebraic loops arise when a model includes an algebraic constraint F(z) = 0.

This constraint might arise as a consequence of the physical interconnectivity
of the system you are modeling, or it might arise because you are specifically

trying to model a differential/algebraic system (DAE).

When a model contains an algebraic loop, Simulink calls a loop solving routine
at each time step. The loop solver performs iterations to determine the solution

2-25

2 How Simulink Works

to the problem (if it can). As a result, models with algebraic loops run slower
than models without them.

To solve F(z) = 0, the Simulink loop solver uses Newton's method with weak
line search and rank-one updates to a Jacobian matrix of partial derivatives.
Although the method is robust, it is possible to create loops for which the loop
solver will not converge without a good initial guess for the algebraic states z.
You can specify an initial guess for a line in an algebraic loop by placing an IC
block (which is normally used to specify an initial condition for a signal) on that
line. As shown above, another way to specify an initial guess for a line in an
algebraic loop is to use an Algebraic Constraint block.

Whenever possible, use an IC block or an Algebraic Constraint block to specify

z L
Gorstant | _@
P T T s

(4w
udi
Seope @—F + T
. u=

Surn

In this case, the input at the u2 port of the adder subsystem is equal to the
subsystem’s output at the current time step for every time step. The
mathematical representation of this system

z=2z+1

reveals that it has no mathematically valid solution.

Highlighting Algebraic Loops

You can cause Simulink to highlight algebraic loops when you update,
simulate, or debug a model. Use the ashow command to highlight algebraic
loops when debugging a model.

To cause Simulink to highlight algebraic loops that it detects when updating or
simulating a model, set the Algebraic loop diagnostic on the Diagnostics
pane of the Configuration Parameters dialog box to Error (see “The

2-26

Simulating Dynamic Systems

Configuration Parameters Dialog Box” on page 10-30 for more information).
This causes Simulink to display an error dialog (the Diagnostics Viewer) and
recolor portions of the diagram that represent the algebraic loops that it
detects. Simulink uses red to color the blocks and lines that constitute the
loops. Closing the error dialog restores the diagram to its original colors.

For example, the following figure shows the block diagram of the hydcyl demo
model in its original colors.

—l

Fump

¥

—E

Pessumes

p1 feliow)

P2 (purple)

Piston p3 (blus)

Positian (Pa)
imj

Vahe/CylinderPiston/Spring Assambhy
contol vake
orifice ama

The following figure shows the diagram after updating when the Algebraic
loop diagnostic is set to Error.

p _>|§|

Ll T Pressums
7.\3\’ L, P iyelow)
P2 (purple)

Pump & ad ain Piston pSI[quej.
Positian (Pa)
Wahe/ Cylinde rPiston/Spring Assambhy {mj
contol vake /
orifice ama

¥

k J

¥

In this example, Simulink has colored the algebraic loop red, making it stand
out from the rest of the diagram.

Eliminating Algebraic Loops

Simulink can eliminate some algebraic loops that include any of following types
of blocks:

¢ Atomic Subsystem

¢ Enabled Subsystem

® Model

2-27

2 How Simulink Works

To enable automatic algebraic loop elimination for a loop involving a particular
instance of an Atomic Subsystem or Enabled Subsystem block, select the
Minimize algebraic loop occurrences parameter on the block’s parameters
dialog box. To enable algebraic loop elimination for a loop involving a Model
block, check the Minimize algebraic loop occurrences parameter on the
Model Referencing configuration parameters dialog (see “Model Referencing
Pane” on page 10-67) of the model referenced by the Model block. If a loop
includes more than one instance of these blocks, you should enable algebraic
loop elimination for all of them, including nested blocks.

The Simulink Minimize algebraic loop solver diagnostic allows you to specify
the action Simulink should take, for example, display a warning message, if it
is unable to eliminate an algebraic loop involving a block for which algebraic
loop elimination is enabled. See “The Diagnostics Pane” on page 10-48 for more
information.

Algebraic loop minimization is off by default because it is incompatible with
conditional input branch optimization in Simulink (see “The Optimization
Pane” on page 10-43) and with single output/update function optimization in
Real-Time Workshop . If you need these optimizations for an atomic or
enabled subsystem or referenced model involved in an algebraic loop, you must
eliminate the algebraic loop yourself.

As an example of the ability of Simulink to eliminate algebraic loops, consider
the following model.

|

Gain Integratar

Im Outt

Constant - -7
Atomic Subsystem

2-28

Simulating Dynamic Systems

Simulating this model with the solver’s Algebraic Loop diagnostic set to error
(see “The Diagnostics Pane” on page 10-48) reveals that this model contains an
algebraic loop involving its atomic subsystem.

Imi Cut

Constant 5 — o
Atomic Subsystam

"
-

Gain

Checking the atomic subsystem’s Minimize algebraic loop occurrences
parameter causes Simulink to eliminate the algebraic loop from the compiled
version of the model.

=1Block Parameters: Atomic Subsystem 21x|

o Select the settings for the subsystem block.
Im Outt

Constant Atomic Subsystem ¥ [Show port abels:

Read/wite pemissions: | Readwiite =
Name of error callback function
7 le I

Permit hierarchical resolution: [l =]

[V Treat as atomic urit
T [Mininizs slashisic loop ooounsross
Saamples fims -1 For inisrtedlt

I

AT spstem code: | Auto = |
AT function rame options: [Auto I
RITW e name options: [2wt I

oK I Cancal Help | Apply |

2-29

2 How Simulink Works

As a result, the model now simulates without error.

Im Outt

Constant Atomic Subsystem

Note that Simulink is able to eliminate the algebraic loop involving this
model’s atomic subsystem because the atomic subsystem contains a block with
a port that does not have direct feed through, i.e., the Integrator block.

If you remove the Integrator block from the atomic subsystem, Simulink is
unable to eliminate the algebraic loop. Hence, attempting to simulate the
model results in an error.

-7 In1 [outt

Gain

Imi Cut

Constant 5 — o
Atomic Subsystam

2-30

Modeling and Simulating Discrete Systems

Modeling and Simulating Discrete Systems

Simulink has the ability to simulate discrete (sampled data) systems, including
systems whose components operate at different rates (multirate systems) and
systems that mix discrete and continuous components (hybrid systems). This
capability stems from two key Simulink features:

¢ SampleTime block parameter

Some Simulink blocks have a SampleTime parameter that you can use to
specify the block’s sample time, i.e., the rate at which it executes during
simulation. All blocks have either an explicit or implicit sample time
parameter. Continuous blocks are examples of blocks that have an implicit
(continuous) sample time. It is possible for a block to have multiple sample
times as provided with blocksets such as the Signal Processing Blockset or
created by a user using the S-Function block.

¢ Sample-time inheritance

Most standard Simulink blocks can inherit their sample time from the blocks
connected to their inputs. Exceptions include blocks in the Continuous
library and blocks that do not have inputs (e.g., blocks from the Sources
library). In some cases, source blocks can inherit the sample time of the block
connected to its input.

The ability to specify sample times on a block-by-block basis, either directly
through the SampleTime parameter or indirectly through inheritance, enables
you to model systems containing discrete components operating at different
rates and hybrid systems containing discrete and continuous components.

Specifying Sample Time

Simulink allows you to specify the sample time of any block that has a
SampleTime parameter. You can use the block’s parameter dialog box to set this
parameter. You do this by entering the sample time in the Sample time field
on the dialog box. You can enter either the sample time alone or a vector whose
first element is the sample time and whose second element is an offset: [T,
To1. Various values of the sample time and offset have special meanings.

2-31

2 How Simulink Works

2-32

The following table summarizes valid values for this parameter and how
Simulink interprets them to determine a block’s sample time.

Sample Time

Usage

[Tsy Tol
0> Ts < Tsim

ITol < Tp

(0, 0,

(o,

1]

0

Specifies that updates occur at simulation times
th =n > Tg + [T,

where n is an integer in the range 1. .Tg;,/Ts and
Tsin is the length of the simulation. Blocks that
have a sample time greater than 0 are said to have
a discrete sample time.

The offset allows you to specify that Simulink
update the block later in the sample interval than
other blocks operating at the same rate.

Specifies that updates occur at every major and
minor time step. A block that has a sample time of
0 is said to have a continuous sample time.

Specifies that updates occur only at major time
steps, skipping minor time steps (see “Minor Time
Steps” on page 2-19). This setting avoids
unnecessary computations for blocks whose sample
time cannot change between major time steps. The
sample time of a block that executes only at major
time steps is said to be fixed in minor time step.

Modeling and Simulating Discrete Systems

Sample Time

Usage

['1: O]s -1

inf

If the block is not in a triggered subsystem, this
setting specifies that the block inherits its sample
time from the block connected to its input
(inheritance) or, in some cases, from the block
connected to its output (back inheritance). If the
block is in a triggered subsystem, you must set the
SampleTime parameter to this setting.

Note that specifying sample-time inheritance for a
source block can cause Simulink to assign an
inappropriate sample time to the block if the source
drives more than one block. For this reason, you
should avoid specifying sample-time inheritance for
source blocks. If you do, Simulink displays a
warning message when you update or simulate the
model.

The meaning of this sample time depends on
whether the active model configuration’s inline
parameters optimization (see “Inline parameters”
on page 10-44) is enabled. If the inline parameters
optimization is enabled, inf signifies that the
block’s output can never change (see “Invariant
Constants” on page 2-39). This speeds up
simulation and the generated code by eliminating
the need to recompute the block’s output at each
time step. If the inline parameters optimization is
disabled or the block with inf sample time drives
an output port of a conditionally executed
subsystem, Simulink treats inf as -1, i.e., as
inherited sample time. This allows you to tune the
block’s parameters during simulation.

2-33

2 How Simulink Works

Changing a Block’s Sample Time

You cannot change the SampleTime parameter of a block while a simulation is
running. If you want to change a block’s sample time, you must stop and restart
the simulation for the change to take effect.

Compiled Sample Time

During the compilation phase of a simulation, Simulink determines the sample
time of the block from its SampleTime parameter (if it has a SampleTime
parameter), sample-time inheritance, or block type (Continuous blocks always
have a continuous sample time). It is this compiled sample time that
determines the sample rate of a block during simulation. You can determine
the compiled sample time of any block in a model by first updating the model
and then getting the block’s CompiledSampleTime parameter, using the
get_param command.

2-34

Modeling and Simulating Discrete Systems

Purely Discrete Systems

Purely discrete systems can be simulated using any of the solvers; there is no
difference in the solutions. To generate output points only at the sample hits,
choose one of the discrete solvers.

Multirate Systems

Multirate systems contain blocks that are sampled at different rates. These
systems can be modeled with discrete blocks or with both discrete and
continuous blocks. For example, consider this simple multirate discrete model.

=+0.1 :-' :
=02 ”
1] | TR i
Constant z+0.1 " [::
=02

DTF2 2)

¥

¥

For this example the DTF1 Discrete Transfer Fen block’s Sample time is set to
[1 0.1], which gives it an offset of 0. 1. The DTF2 Discrete Transfer Fcn block’s
Sample time is set to 0.7, with no offset.

Starting the simulation and plotting the outputs using the stairs function

[t,x,y] = sim('multirate', 3);
stairs(t,y)

produces this plot

y(1)

For the DTF1 block, which has an offset of 0. 1, there is no output until t = 0.1.
Because the initial conditions of the transfer functions are zero, the output of
DTF1, y(1), is zero before this time.

2-35

2 How Simulink Works

Determining Step Size for Discrete Systems

Simulating a discrete system requires that the simulator take a simulation
step at every sample time hit, that is, at integer multiples of the system’s
shortest sample time. Otherwise, the simulator might miss key transitions in
the system’s states. Simulink avoids this by choosing a simulation step size to
ensure that steps coincide with sample time hits. The step size that Simulink
chooses depends on the system’s fundamental sample time and the type of
solver used to simulate the system.

The fundamental sample time of a discrete system is the greatest integer
divisor of the system’s actual sample times. For example, suppose that a
system has sample times of 0.25 and 0.5 second. The fundamental sample time
in this case is 0.25 second. Suppose, instead, the sample times are 0.5 and 0.75
second. In this case, the fundamental sample time is again 0.25 second.

You can direct Simulink to use either a fixed-step or a variable-step discrete
solver to solve a discrete system. A fixed-step solver sets the simulation step
size equal to the discrete system’s fundamental sample time. A variable-step
solver varies the step size to equal the distance between actual sample time
hits. The following diagram illustrates the difference between a fixed-step and
a variable-size solver.

S S S S S

0.00 0.25 0.50 0.75 1.00 1.25 1.50

v

Fixed-Step Solver

B>

$ 1t 4

0.00 0.25 0.50 0.75 1.00 1.25 1.50

v

Variable-Step Solver

2-36

Modeling and Simulating Discrete Systems

In the diagram, arrows indicate simulation steps and circles represent sample
time hits. As the diagram illustrates, a variable-step solver requires fewer
simulation steps to simulate a system, if the fundamental sample time is less
than any of the actual sample times of the system being simulated. On the
other hand, a fixed-step solver requires less memory to implement and is faster
if one of the system’s sample times is fundamental. This can be an advantage
in applications that entail generating code from a Simulink model (using
Real-Time Workshop®).

Sample Time Propagation

When updating a model’s diagram, for example, at the beginning of a
simulation, Simulink uses a process called sample time propagation to
determine the sample times of blocks that inherit their sample times. The
figure below illustrates a Discrete Filter block with a sample time of Ts driving
a Gain block.

1
.. ——
1+zz1

Dizerete Filter Gain

Because the Gain block’s output is simply the input multiplied by a constant,
its output changes at the same rate as the filter. In other words, the Gain block
has an effective sample rate equal to that of the filter’s sample rate. This is the
fundamental mechanism behind sample time propagation in Simulink.

Simulink assigns an inherited sample time to a block based on the sample
times of the blocks connected to its inputs. If all the inputs have the same
sample time, Simulink assigns that sample time to the block. If the inputs have
different sample times, if all sample times are integer multiples of the fastest
sample time, the block is assigned the sample time of the fastest input. If a
variable-step solver is being used, the block is assigned the continuous sample
time. If a fixed-step solver is being used and the greatest common divisor of the
sample times (the fundamental sample time) can be computed, it is used.
Otherwise continuous is used.

2-37

2 How Simulink Works

Note A Model block can inherit its sample time from its inputs only if the
inputs and outputs of the model that it references do not depend on the
sample time (see “Model Block Sample Times” on page 4-61 for more
information).

Under some circumstances, Simulink also back propagates sample times to
source blocks if it can do so without affecting the output of a simulation. For
instance, in the model below, Simulink recognizes that the Signal Generator
block is driving a Discrete-Time Integrator block, so it assigns the Signal
Generator block and the Gain block the same sample time as the Discrete-Time

Integrator block.
oooo T
oo - —
=1
Signal Discrate-Time &ain
Generator Integratar

You can verify this by selecting Sample Time Colors from the Simulink
Format menu and noting that all blocks are colored red. Because the
Discrete-Time Integrator block only looks at its input at its sample times, this
change does not affect the outcome of the simulation but does result in a
performance improvement.

Replacing the Discrete-Time Integrator block with a continuous Integrator
block, as shown below, and recoloring the model by choosing Update diagram
from the Edit menu cause the Signal Generator and Gain blocks to change to
continuous blocks, as indicated by their being colored black.

ooog 1
oo I -
=

Signal Integratar Fain
Generator

2-38

Modeling and Simulating Discrete Systems

Invariant Constants

Simulink by default assigns Constant blocks a sample time of infinity, also
referred to as a constant sample time. This means that the outputs of any
blocks that inherit a constant sample time from a Constant block do not change
during the simulation unless the parameters are explicitly modified by the
model user.

For example, in this model, both the Constant and Gain blocks have constant
sample time.

P> & [P

Constant .
Gain Discrete-Time Secope

Integrator

¥

Because Simulink supports the ability to change block parameters during a
simulation, all blocks, even blocks having constant sample time, must generate
their output at the model’s effective sample time.

Note You can determine which blocks have constant sample time by selecting
Sample Time Colors from the Format menu. Blocks having constant sample
time are colored magenta.

Because of this feature, all blocks compute their output at each sample time
hit, or, in the case of purely continuous systems, at every simulation step. For
blocks having constant sample time whose parameters do not change during a
simulation, evaluating these blocks during the simulation is inefficient and
slows down the simulation.

You can set the inline parameters option (see “Inline parameters” on

page 10-44) to remove all blocks having constant sample times from the
simulation “loop.” The effect of this feature is twofold. First, parameters for
these blocks cannot be changed during a simulation. Second, simulation speed
is improved. The speed improvement depends on model complexity, the
number of blocks with constant sample time, and the effective sampling rate of
the simulation.

2-39

2 How Simulink Works

Note Simulink displays an error if you connect a Constant, Model, or
S-Function block with constant sample time to the output port of a
conditionally executed subsystem. To avoid the error, either change the
sample time of the block to a nonconstant sample time or insert a Signal
Conversion block between the block with constant sample time and the output
port.

Mixed Continuous and Discrete Systems

Mixed continuous and discrete systems are composed of both sampled and
continuous blocks. Such systems can be simulated using any of the integration
methods, although certain methods are more efficient and accurate than
others. For most mixed continuous and discrete systems, the Runge-Kutta
variable-step methods, ode23 and ode45, are superior to the other methods in
terms of efficiency and accuracy. Because of discontinuities associated with the
sample and hold of the discrete blocks, the ode15s and ode113 methods are not
recommended for mixed continuous and discrete systems.

2-40

Simulink Basics

The following sections explain how to perform basic Simulink tasks.

Starting Simulink (p. 3-2)

Opening Models (p. 3-4)

Entering Simulink Commands (p. 3-5)
Simulink Windows (p. 3-7)

Saving a Model (p. 3-9)
Printing a Block Diagram (p. 3-12)
Generating a Model Report (p. 3-16)

Summary of Mouse and Keyboard
Actions (p. 3-19)

Ending a Simulink Session (p. 3-22)

How to start Simulink.
How to open a Simulink model.
Explains various ways to execute Simulink commands.

Guide to the features of the windows used to display
Simulink models and block libraries.

How to save a Simulink model to disk.
How to print a Simulink block diagram.

How to generate an HTML report on a model’s structure
and content.

Lists key combinations and mouse actions that you can
use to execute Simulink commands.

How to end a Simulink session.

3 Simulink Basics

Starting Simulink

To start Simulink, you must first start MATLAB. Consult your MATLAB
documentation for more information. You can then start Simulink in two ways:

¢ Click the Simulink icon El on the MATLAB toolbar.
¢ Enter the simulink command at the MATLAB prompt.

On Microsoft Windows platforms, starting Simulink displays the Simulink
Library Browser.

O =8|

Commanly Used Blocks: simink Tommocy
Used Diocks

= 1 Sk =
] Communly Used Blochs :'m=

B Contiros
B Chucorkinitie:

B Ciscrete '|E
] Logic o B Oper ations E Discortinuties
B Lo Tabbes e
2] Mith Operations E
2] model verfication =
o modekwds Ltites Pryey
2] Ports s Subsrstems (1]
B sansl attrbaes .
yiisk

Legic and Bt Dperstions

] Sagnal Roubng Likogs 1 ases
2 Soks

2 Sources

2 Lser-Defined Functions.

Math Dipesations:

S
s
® 1

#1- 22 adduonsl Math b Discrete & Madel Verific stior
5 B Bes e Workshop o
W Srdek e Wi | ModelWinds Ui
W staefiow =
£
m Puute & Subsystema |
Ready '

The Library Browser displays a tree-structured view of the Simulink block
libraries installed on your system. You can build models by copying blocks from
the Library Browser into a model window (see “Editing Blocks” on page 5-4).

3-2

Starting Simulink

On Macintosh or Linux platforms, starting Simulink displays the Simulink
block library window.

E!Lihrary: simulink

File Edit WYiew Formatb Help

\I)\' Cwwas ,IF""" Fré-
o] e i [& - o L1
En FIAY | \ i |
Soumas Sinks Continuous Disc et Discontinuities Signal Signal
Routing Attributes
+ - &% = TL £)
s % = y=fiuf y=fitu}) ®® 4}7 c Misc
- == i
Math Logic and Bit Lookup Uzar-Defined Model For= & Mode -\Wide
Dperations Dperations Tablkes Functions Varification Subsystams Ltilities
Blocksets & COmmanty Additional Math o Simulink Block Library 6.0
Taolboses used blocks & Dizcrete emes Copyright fe) 1990-2004
The MathWarks, Inc.

The Simulink library window displays icons representing the block libraries
that come with Simulink. You can create models by copying blocks from the

library into a model window.

Note On Windows, you can display the Simulink library window by

right-clicking the Simulink node in the Library Browser window.

3 Simulink Basics

3-4

Opening Models

To edit an existing model diagram, either

¢ Click the Open button on the Library Browser’s toolbar (Windows only) or
select Open from the Simulink library window’s File menu and then choose
or enter the file name for the model to edit.

¢ Enter the name of the model (without the .md1 extension) in the MATLAB
Command Window. The model must be in the current directory or on the
path.

Note Ifthe character encoding of the model to be opened differs from the
character encoding of the current MATLAB session, you should change the
MATLAB encoding to the model encoding before opening the model, using the
slCharacterEncoding command.

Avoiding Initial Model Open Delay

You may notice that the first model that you open in a MATLAB session takes
longer to open than do subsequent models. This is because to reduce its own
startup time and to avoid unnecessary consumption of your system’s memory,
MATLAB does not load Simulink into memory until the first time you open a
Simulink model. You can cause MATLAB to load Simulink at MATLAB
startup, and thus avoid the initial model opening delay, using either the -r
MATLAB command line option or your MATLAB startup.m file to run either
load_simulink (loads Simulink) or simulink (loads Simulink and opens the
Simulink Library browser) at MATLAB startup. For example, to load Simulink
at MATLAB startup on Microsoft Windows systems, create a desktop shortcut
with the following target:

<matlabroot>\bin\win32\matlab.exe -r load_simulink

Similarly, the following command loads Simulink at MATLAB startup on
UNIX systems:

matlab -r load_simulink

Entering Simulink Commands

Entering Simulink Commands

You run Simulink and work with your model by entering commands. You can
enter commands by

¢ Selecting items from the Simulink menu bar

® Selecting items from a context-sensitive Simulink menu (Windows only)
¢ Clicking buttons on the Simulink toolbar (Windows only)

¢ Entering commands in the MATLAB Command Window

Using the Simulink Menu Bar to Enter Commands

The Simulink menu bar appears near the top of each model window. The menu
commands apply to the contents of that window.

Using Context-Sensitive Menus to Enter Commands

Simulink displays a context-sensitive menu when you click the right mouse
button over a model or block library window. The contents of the menu depend
on whether a block is selected. If a block is selected, the menu displays
commands that apply only to the selected block. If no block is selected, the
menu displays commands that apply to a model or library as a whole.

Using the Simulink Toolbar to Enter Commands

Model windows in the Windows version of Simulink optionally display a
toolbar beneath the Simulink menu bar. To display the toolbar, select the
Toolbar option on the Simulink View menu.

Eluntitied =1l x|

File Edit WYiew Simulation Format Tools Help

O|=EdS| &R e IINormal 'H@Iﬁ”ﬁ?@ <«—Toolbor

Ready [1o02 |odets v

3 Simulink Basics

The toolbar contains buttons corresponding to frequently used Simulink
commands, such as those for opening, running, and closing models. You can
run such commands by clicking the corresponding button. For example, to open
a Simulink model, click the button containing the open folder icon. You can
determine which command a button executes by moving the mouse pointer
over the button. A small window appears containing text that describes the
button. The window is called a tooltip. Each button on the toolbar displays a
tooltip when the mouse pointer hovers over it. You can hide the toolbar by
clearing the Toolbar option on the Simulink View menu.

Using the MATLAB Window to Enter Commands

When you run a simulation and analyze its results, you can enter MATLAB
commands in the MATLAB Command Window. See Chapter 10, “Running
Simulations,” and Chapter 11, “Analyzing Simulation Results,” for more
information.

Undoing a Command

You can cancel the effects of up to 101 consecutive operations by choosing Undo
from the Edit menu. You can undo these operations:

¢ Adding, deleting, or moving a block

¢ Adding, deleting, or moving a line

¢ Adding, deleting, or moving a model annotation

¢ Editing a block name

¢ Creating a subsystem (see “Undoing Subsystem Creation” on page 4-22 for

more information)

You can reverse the effects of an Undo command by choosing Redo from the
Edit menu.

3-6

Simulink Windows

Simulink Windows

Simulink uses separate windows to display a block library browser, a block
library, a model, and graphical (scope) simulation output. These windows are
not MATLAB figure windows and cannot be manipulated using Handle
Graphics® commands.

Simulink windows are sized to accommodate the most common screen
resolutions available. If you have a monitor with exceptionally high or low
resolution, you might find the window sizes too small or too large. If this is the
case, resize the window and save the model to preserve the new window
dimensions.

Status Bar

The Windows version of Simulink displays a status bar at the bottom of each
model and library window.

=10l x|

File Edit WYiew Simulation Format Tools Help

Ready [t00% | | ode4s /| ¢——— Status bar

When a simulation is running, the status bar displays the status of the
simulation, including the current simulation time and the name of the current
solver. You can display or hide the status bar by selecting or clearing the
Status Bar option on the Simulink View menu.

Zooming Block Diagrams

Simulink allows you to enlarge or shrink the view of the block diagram in the
current Simulink window. To zoom a view:

¢ Select Zoom In from the View menu (or type r) to enlarge the view.

¢ Select Zoom Out from the View menu (or type v) to shrink the view.

3-7

3 Simulink Basics

¢ Select Fit System to View from the View menu (or press the space bar) to
fit the diagram to the view.
¢ Select Normal from the View menu to view the diagram at actual size.

By default, Simulink fits a block diagram to view when you open the diagram
either in the model browser’s content pane or in a separate window. If you
change a diagram’s zoom setting, Simulink saves the setting when you close
the diagram and restores the setting the next time you open the diagram. If you
want to restore the default behavior, choose Fit System to View from the View
menu the next time you open the diagram.

Panning Block Diagrams

You can use the mouse to pan model diagrams that are too large to fit in the
model editor’s window. To do this, position the mouse over the diagram and
hold down the left mouse button and the P or Q key on the keyboard. Moving
the mouse now pans the model diagram in the editor window.

3-8

Saving a Model

Saving a Model

You can save a model by choosing either the Save or Save As command from
the File menu. Simulink saves the model by generating a specially formatted
file called the model file (with the .md1 extension) that contains the block
diagram and block properties.

If you are saving a model for the first time, use the Save command to provide
aname and location for the model file. Model file names must start with a letter
and can contain no more than 63 letters, numbers, and underscores. The file
name must not be the same as that of a MATLAB command.

If you are saving a model whose model file was previously saved, use the Save
command to replace the file’s contents or the Save As command to save the
model with a new name or location. You can also use the Save As command to
save the model in a format compatible with previous releases of Simulink (see
“Saving a Model in Earlier Formats” on page 3-9).

Simulink follows this procedure while saving a model:
1 Ifthe mdl file for the model already exists, it is renamed as a temporary file.

2 Simulink executes all block PreSaveFcn callback routines, then executes the
block diagram’s PreSaveFcn callback routine.

3 Simulink writes the model file to a new file using the same name and an
extension of mdl.

4 Simulink executes all block PostSaveFcn callback routines, then executes
the block diagram’s PostSaveFcn callback routine.

5 Simulink deletes the temporary file.

If an error occurs during this process, Simulink renames the temporary file to
the name of the original model file, writes the current version of the model to a
file with an .err extension, and issues an error message. Simulink performs
steps 2 through 4 even if an error occurs in an earlier step.

Saving a Model in Earlier Formats

The Save As command allows you to save a model created with the latest
version of Simulink in formats used by earlier versions of Simulink, including

3-9

3 Simulink Basics

Simulink 3 (Release 11), Simulink 4 (Release 12), and Simulink 4.1 (Release
12.1). You might want to do this, for example, if you need to make a model
available to colleagues who have access only to one of these earlier versions of
Simulink.

To save a model in earlier format:
1 Select Save As from the Simulink File menu.

Simulink displays the Save As dialog box.

21|

Save in: I@ simgeneral j - = EB-

ja dblpendz.md| lights.mdl therma,
bangbang, mdl hardstop,mdl onecart.mdl toilet, me
bounce.mdl byl mdl penddemnao, mdl wdp.md|
countersdema,md| heedeyl4,mdl simppend. md|
[dblcartt . md hrydlib.mdl simquat.mdl
. heydrod.mdl slprimes.md|

File name: |hydc:_l,ll.mdl

Simulink 4.1/H12.1 Models [*.mdl

2 Select a format from the Save as type list on the dialog box.

3 Click the Save button.

When saving a model in an earlier version’s format, Simulink saves the model
in that format regardless of whether the model contains blocks and features
that were introduced after that version. If the model does contain blocks or use
features that postdate the earlier version, the model might not give correct
results when run by the earlier version. For example, matrix and frame signals
do not work in Release 11, because Release 11 does not have matrix and frame
support. Similarly, models that contain unconditionally executed subsystems
marked “Treat as atomic unit” might produce different results in Release 11,
because Release 11 does not support unconditionally executed atomic
subsystems.

3-10

Saving a Model

The command converts blocks that postdate the earlier version into empty

masked subsystem blocks colored yellow. For example, post-Release 11 blocks
include

¢ Lookup Table (n-D)

® Assertion

¢ Rate Transition

¢ PreLoookup Index Search
¢ Interpolation (n-D)

¢ Direct Lookup Table (n-D)
¢ Polynomial

® Matrix Concatenation

¢ Signal Specification

¢ Bus Creator

¢ If, Whilelterator, Forlterator, Assignment
® SwitchCase

¢ Bitwise Logical Operator

Post-Release 11 blocks from Simulink blocksets appear as unlinked blocks.

3-11

3 Simulink Basics

Printing a Block Diagram

3-12

You can print a block diagram by selecting Print from the File menu (on a
Microsoft Windows system) or by using the print command in the MATLAB
Command Window (on all platforms).

On a Microsoft Windows system, the Print menu item prints the block diagram
in the current window.

Print Dialog Box

When you select the Print menu item, the Print dialog box appears. The Print
dialog box enables you to selectively print systems within your model. Using
the dialog box, you can print

¢ The current system only

® The current system and all systems above it in the model hierarchy

® The current system and all systems below it in the model hierarchy, with the
option of looking into the contents of masked and library blocks

¢ All systems in the model, with the option of looking into the contents of
masked and library blocks

¢ An overlay frame on each diagram
The portion of the Print dialog box that supports selective printing is similar

on supported platforms. This figure shows how it looks on a Microsoft Windows
system. In this figure, only the current system is to be printed.

— Optionz
o o o e
Current sgﬁm Current system Current system Al zystems

and abowve and belaw

A I S

™ Include Print Log 7| ook under mash dislog

I | Expand urigue lbramliks

Printing a Block Diagram

When you select either the Current system and below or All systems option,
two check boxes become enabled. In this figure, All systems is selected.

— Optionz
. . . =
Current system Current system Current system Al systems
. and ab:oue and bglow
L N A
™ Include Print Log [Look under mask dialog
[Expand unigue library links
I™ Frame: |D:\W5hoolborsimulinksimulinksldefaulfram . |

ak. I Cancel |

Selecting the Look Under Mask Dialog check box prints the contents of
masked subsystems when encountered at or below the level of the current
block. When you are printing all systems, the top-level system is considered the
current block, so Simulink looks under any masked blocks encountered.

Selecting the Expand Unique Library Links check box prints the contents of
library blocks when those blocks are systems. Only one copy is printed

regardless of how many copies of the block are contained in the model. For more
information about libraries, see “Working with Block Libraries” on page 5-29.

The print log lists the blocks and systems printed. To print the print log, select
the Include Print Log check box.

Selecting the Frame check box prints a title block frame on each diagram.
Enter the path to the title block frame in the adjacent edit box. You can create
a customized title block frame, using the MATLAB frame editor. See
frameedit in the online MATLAB reference for information on using the frame
editor to create title block frames.

Print Command
The format of the print command is

print -ssys -device filename

3-13

3 Simulink Basics

sys is the name of the system to be printed. The system name must be preceded
by the s switch identifier and is the only required argument. sys must be open
or must have been open during the current session. If the system name
contains spaces or takes more than one line, you need to specify the name as a
string. See the examples below.

device specifies a device type. For a list and description of device types, see the
documentation for the MATLAB print function.

filename is the PostScript file to which the output is saved. If filename exists,
it is replaced. If filename does not include an extension, an appropriate one is
appended.

For example, this command prints a system named untitled.

print -suntitled

This command prints the contents of a subsystem named Sub1 in the current
system.

print -sSub1

This command prints the contents of a subsystem named Requisite Friction.
print (['-sRequisite Friction'])
The next example prints a system named Friction Model, a subsystem whose

name appears on two lines. The first command assigns the newline character
to a variable; the second prints the system.

cr = sprintf('\n');
print (['-sFriction' cr 'Model'])
To print the currently selected subsystem, enter

print(['-s', gcbl)

Specifying Paper Size and Orientation

Simulink lets you specify the type and orientation of the paper used to print a
model diagram. You can do this on all platforms by setting the model’s
PaperType and PaperOrientation properties, respectively (see “Model and
Block Parameters” in the online documentation), using the set_param
command. You can set the paper orientation alone, using the MATLAB orient

3-14

Printing a Block Diagram

command. On Windows, the Print and Printer Setup dialog boxes let you set
the page type and orientation properties as well.

Positioning and Sizing a Diagram

You can use a model’s PaperPositionMode and PaperPosition parameters to
position and size the model’s diagram on the printed page. The value of the
PaperPosition parameter is a vector of form [left bottom width height].
The first two elements specify the bottom left corner of a rectangular area on
the page, measured from the page’s bottom left corner. The last two elements
specify the width and height of the rectangle. When the model’s
PaperPositionMode is manual, Simulink positions (and scales, if necessary)
the model’s diagram to fit inside the specified print rectangle. For example, the
following commands

vdp

set_param('vdp', 'PaperType', 'usletter')
set_param('vdp', 'PaperOrientation', 'landscape')
set_param('vdp', 'PaperPositionMode', 'manual')
set_param('vdp', 'PaperPosition', [0.5 0.5 4 4])
print -svdp

print the block diagram of the vdp sample model in the lower left corner of a
U.S. letter-size page in landscape orientation.

If PaperPositionMode is auto, Simulink centers the model diagram on the
printed page, scaling the diagram, if necessary, to fit the page.

3-15

3 Simulink Basics

Generating a Model Report

A Simulink model report is an HTML document that describes a model’s
structure and content. The report includes block diagrams of the model and its
subsystems and the settings of its block parameters.

To generate a report for the current model:
1 Select Print details from the model’s File menu.

The Print Details dialog box appears.

<} Print Details - fuelsys o] 4
File lacationfnaming options

Directary & Current (pwd)
& Temparary tempdin)

" Cther: Il‘tElat—toastenm21perrecnbin1win32
[Incrernent filenarme to prevent ovenwriting old files

Systermn reporting aptions

o~ " Currentand above € Currentand below © Entire model

The dialog box allows you to select various report options (see “Model Report
Options” on page 3-17).

2 Select the desired report options on the dialog box.

3 Select Print.

Simulink generates the HTML report and displays the in your system’s default
HTML browser.

3-16

Cenerating a Model Report

While generating the report, Simulink displays status messages on a messages
pane that replaces the options pane on the Print Details dialog box.

<} Print Details - fuelsys =10 x|
|3) Impartant messages {running a loop) LI
Looping on madel "fuelsys”
Looping on machine "fuelsys"
Looping on systerm "fuelsys”
Could not find any "Block” abjects for summary tahle.

You can select the detail level of the messages from the list at the top of the
messages pane. When the report generation process begins, the Print button
on the Print Details dialog box changes to a Stop button. Clicking this button
terminates the report generation. When the report generation process finishes,
the Stop button changes to an Options button. Clicking this button redisplays
the report generation options, allowing you to generate another report without
having to reopen the Print Details dialog box.

Model Report Options

The Print Details dialog box allows you to select the following report options.

Directory

The directory where Simulink stores the HTML report that it generates. The
options include your system’s temporary directory (the default), your system’s
current directory, or another directory whose path you specify in the adjacent
edit field.

Increment filename to prevent overwriting old files

Creates a unique report file name each time you generate a report for the same
model in the current session. This preserves each report.

3-17

3 Simulink Basics

Current object
Include only the currently selected object in the report.

Current and above

Include the current object and all levels of the model above the current object
in the report.

Current and below
Include the current object and all levels below the current object in the report.

Entire model
Include the entire model in the report.

Look under mask dialog
Include the contents of masked subsystems in the report.

Expand unique library links

Include the contents of library blocks that are subsystems. The report includes
a library subsystem only once even if it occurs in more than one place in the
model.

3-18

Summary of Mouse and Keyboard Actions

Summary of Mouse and Keyboard Actions

These tables summarize the use of the mouse and keyboard to manipulate
blocks, lines, and signal labels. LMB means press the left mouse button; CMB,
the center mouse button; and RMB, the right mouse button.

Manipulating Blocks
The following table lists mouse and keyboard actions that apply to blocks.

Task Microsoft Windows Macintosh or Linux

Select one block LMB LMB

Select multiple Shift + LMB Shift + LMB; or CMB

blocks alone

Copy block from Drag block Drag block

another window

Move block Drag block Drag block

Duplicate block Ctrl + LMB and drag; Ctrl + LMB and drag;
or RMB and drag or RMB and drag

Connect blocks LMB LMB

Disconnect block

Open selected
subsystem

Go to parent of
selected subsystem

Shift + drag block

Enter

Esc

Shift + drag block; or
CMB and drag

Return

Esc

3-19

3 Simulink Basics

3-20

Manipulating Lines
The following table lists mouse and keyboard actions that apply to lines.

Task

Microsoft Windows

Macintosh or Linux

Select one line

Select multiple lines

Draw branch line

Route lines around

blocks

Move line segment
Move vertex

Create line
segments

LMB
Shift + LMB

Ctrl + drag line; or
RMB and drag line

Shift + draw line
segments

Drag segment
Drag vertex

Shift + drag line

LMB

Shift + LMB; or CMB
alone

Ctrl + drag line; or
RMB + drag line

Shift + draw line
segments; or CMB and
draw segments

Drag segment
Drag vertex

Shift + drag line; or
CMB + drag line

Manipulating Signal Labels
The next table lists mouse and keyboard actions that apply to signal labels.

Action

Microsoft Windows

Macintosh or Linux

Create signal label

Copy signal label
Move signal label
Edit signal label

Delete signal label

Double-click line, then
enter label

Ctrl + drag label
Drag label
Click in label, then edit

Shift + click label, then
press Delete

Double-click line, then
enter label

Ctrl + drag label
Drag label
Click in label, then edit

Shift + click label, then
press Delete

Summary of Mouse and Keyboard Actions

Manipulating Annotations

The next table lists mouse and keyboard actions that apply to annotations.

Action

Microsoft Windows

Macintosh or Linux

Create annotation

Copy annotation
Move annotation
Edit annotation

Delete annotation

Double-click in
diagram, then enter
text

Ctrl + drag label
Drag label
Click in text, then edit

Shift + select
annotation, then press
Delete

Double-click in
diagram, then enter
text

Ctrl + drag label
Drag label
Click in text, then edit

Shift + select
annotation, then press
Delete

3-21

3 Simulink Basics

Ending a Simulink Session

Terminate a Simulink session by closing all Simulink windows.

Terminate a MATLAB session by choosing one of these commands from the
File menu:

¢ On a Microsoft Windows system: Exit MATLAB
¢ On a Macintosh or Linux system: Quit MATLAB

3-22

Creating a Model

The following sections explain how to create Simulink models.

Creating a New Model (p. 4-2)
Selecting Objects (p. 4-3)

Specifying Block Diagram Colors
(p. 4-5)

Connecting Blocks (p. 4-9)
Annotating Diagrams (p. 4-16)
Creating Subsystems (p. 4-20)

Creating Conditionally Executed
Subsystems (p. 4-26)

Modeling with Control Flow Blocks
(p. 4-42)

Referencing Models (p. 4-53)
Model Discretizer (p. 4-68)
Using Callback Routines (p. 4-90)

Working with Model Workspaces
(p. 4-96)

Managing Model Versions (p. 4-103)

How to create a new model.
How to select objects in a model.

How to specify the colors of blocks, lines, and annotations
and the background of the diagram.

How to draw connections between blocks.
How to add annotations to a block diagram.
How to create subsystems.

How to create subsystems that are executed only when
specified events occur or conditions are satisfied.

How to use control flow blocks to model control logic.

How to include one model as a block in another model.
How to create a discrete model from a continuous model.
How to use callback routines to customize a model.

How to modify, save, and reload a model’s private
workspace.

How to use version control systems to manage and track
development of Simulink models.

4 Creating a Model

4-2

Creating a New Model

To create a new model, click the New button on the Library Browser’s toolbar
(Windows only) or choose New from the library window’s File menu and select
Model. You can move the window as you do other windows. Chapter 1, “Getting
Started” describes how to build a simple model. “Modeling Equations” on
page 8-2 describes how to build systems that model equations.

Selecting Obijects

Selecting Objects

Many model building actions, such as copying a block or deleting a line, require
that you first select one or more blocks and lines (objects).

Selecting One Object

To select an object, click it. Small black square “handles” appear at the corners
of a selected block and near the end points of a selected line. For example, the
figure below shows a selected Sine Wave block and a selected line.

—=h

Sine Wawve

When you select an object by clicking it, any other selected objects are
deselected.

Selecting More Than One Object

You can select more than one object either by selecting objects one at a time, by
selecting objects located near each other using a bounding box, or by selecting
the entire model.

Selecting Multiple Objects One at a Time

To select more than one object by selecting each object individually, hold down
the Shift key and click each object to be selected. To deselect a selected object,
click the object again while holding down the Shift key.

Selecting Multiple Objects Using a Bounding Box

An easy way to select more than one object in the same area of the window is
to draw a bounding box around the objects:

1 Define the starting corner of a bounding box by positioning the pointer at
one corner of the box, then pressing and holding down the mouse button.
Notice the shape of the cursor.

.|

Sine Wawve
Scope

4-3

4 Creating a Model

2 Drag the pointer to the opposite corner of the box. A dotted rectangle
encloses the selected blocks and lines.

Sine Wawve
Scope

3 Release the mouse button. All blocks and lines at least partially enclosed by
the bounding box are selected.

]

Sine Wawve
Scope

Selecting the Entire Model

To select all objects in the active window, choose Select All from the Edit
menu. You cannot create a subsystem by selecting blocks and lines in this way.
For more information, see “Creating Subsystems” on page 4-20.

4-4

Specifying Block Diagram Colors

Specifying Block Diagram Colors

Simulink allows you to specify the foreground and background colors of any
block or annotation in a diagram, as well as the diagram’s background color. To
set the background color of a block diagram, select Sereen color from the
Simulink Format menu. To set the background color of a block or annotation
or group of such items, first select the item or items. Then select Background
color from the Simulink Format menu. To set the foreground color of a block

or annotation, first select the item. Then select Foreground color from the
Simulink Format menu.

In all cases, Simulink displays a menu of color choices. Choose the desired color
from the menu. If you select a color other than Custom, Simulink changes the
background or foreground color of the diagram or diagram element to the
selected color.

Choosing a Custom Color

If you choose Custom, Simulink displays the Simulink Choose Custom Color
dialog box.

Choose Custom Color EHE

Basic colors:

JO 5 1
il il |
T
L Uiy b))
AN EEEEEN

LCustom colors:

N o o
N o

Define Custom Colors »» |

Cancel |

The dialog box displays a palette of basic colors and a palette of custom colors
that you previously defined. If you have not previously created any custom
colors, the custom color palette is all white. To choose a color from either
palette, click the color, and then click the OK button.

4-5

4 Creating a Model

4-6

Defining a Custom Color

To define a custom color, click the Define Custom Colors button on the
Choose Custom Color dialog box. The dialog box expands to display a custom
color definer.

Choose Custom Color (2]]
e ; Hue-saturation cursor
O T .
il
B TR
W .
L i i il |
I T M
LCustom colors: Lomi
uminescence cursor
E e —
ﬁat:lm Green: |205
Wefine Eustonm Calars >3 | ColarlS glid Lurr: IE Blue: W
Cancel | Add ta Custom Colors |

The color definer allows you to specify a custom color by

¢ Entering the red, green, and blue components of the color as values between
0 (darkest) and 255 (brightest)

¢ Entering hue, saturation, and luminescence components of the color as
values in the range 0 to 255

¢ Moving the hue-saturation cursor to select the hue and saturation of the
desired color and the luminescence cursor to select the luminescence of the
desired color

The color that you have defined in any of these ways appears in the

Color | Solid box. To redefine a color in the Custom colors palette, select the
color and define a new color, using the color definer. Then click the Add to
Custom Colors button on the color definer.

Specifying Colors Programmatically

You can use the set_param command at the MATLAB command line or in an
M-file program to set parameters that determine the background color of a
diagram and the background color and foreground color of diagram elements.

Specifying Block Diagram Colors

The following table summarizes the parameters that control block diagram
colors.

Parameter Determines

ScreenColor Background color of block diagram
BackgroundColor Background color of blocks and annotations
ForegroundColor Foreground color of blocks and annotations

You can set these parameters to any of the following values:

® 'plack', 'white', 'red', 'green', 'blue', 'cyan', 'magenta’, 'yellow',
‘gray', 'lightBlue’, 'orange’', 'darkGreen'

®'[r,g,b]"
where r, g, and b are the red, green, and blue components of the color
normalized to the range 0.0 to 1.0.

For example, the following command sets the background color of the currently
selected system or subsystem to a light green color:

set_param(gcs, 'ScreenColor', '[0.3, 0.9, 0.5]"')

Displaying Sample Time Colors

Simulink can color code the blocks and lines in your model to indicate the
sample rates at which the blocks operate.

Color Use

Black Continuous blocks

Magenta Constant blocks

Yellow Hybrid (subsystems grouping blocks, or Mux or Demux
blocks grouping signals with varying sample times)

Red Fastest discrete sample time

Green Second fastest discrete sample time

4-7

4 Creating a Model

4-8

Color Use

Blue Third fastest discrete sample time
Light Blue Fourth fastest discrete sample time

Dark Green Fifth fastest discrete sample time

Orange Sixth fastest discrete sample time
Cyan Blocks in triggered subsystems
Gray Fixed in minor step

To enable the sample time colors feature, select Sample Time Colors from the
Format menu.

Simulink does not automatically recolor the model with each change you make
to it, so you must select Update Diagram from the Edit menu to explicitly
update the model coloration. To return to your original coloring, disable sample
time coloration by again choosing Sample Time Colors.

The color that Simulink assigns to each block depends on its sample time
relative to other sample times in the model. This means that the same sample
time may be assigned different colors in a toplevel model and in the models that
it references (see “Referencing Models” on page 4-53). For example, suppose
that a model defines three sample times: 1, 2, and 3. Further, suppose that it
references a model that defines two sample times: 2 and 3. In this case, blocks
operating at the 2 sample rate appear as green in the toplevel model and as red
in the referenced model.

It is important to note that Mux and Demux blocks are simply grouping
operators; signals passing through them retain their timing information. For
this reason, the lines emanating from a Demux block can have different colors
if they are driven by sources having different sample times. In this case, the
Mux and Demux blocks are color coded as hybrids (yellow) to indicate that they
handle signals with multiple rates.

Similarly, Subsystem blocks that contain blocks with differing sample times
are also colored as hybrids, because there is no single rate associated with
them. If all the blocks within a subsystem run at a single rate, the Subsystem
block is colored according to that rate.

Connecting Blocks

Connecting Blocks

Simulink block diagrams use lines to represent pathways for signals among
blocks in a model (see “Annotating Diagrams” on page 4-16 for information on
signals). Simulink can connect blocks for you or you can connect the blocks
yourself by drawing lines from their output ports to their input ports.

Automatically Connecting Blocks

You can command Simulink to connect blocks automatically. This eliminates
the need for you to draw the connecting lines yourself. When connecting blocks,
Simulink routes lines around intervening blocks to avoid cluttering the
diagram.

Connecting Two Blocks
To autoconnect two blocks:

1 Select the source block.

2 Hold down Ctrl and left-click the destination block.

Simulink connects the source block to the destination block, routing the line
around intervening blocks if necessary.

4-9

4 Creating a Model

When connecting two blocks, Simulink draws as many connections as possible
between the two blocks as illustrated in the following example.

thtl L] L]
[-
ot s " "
SubBystem

FubSysten

Before autoconnect After autoconnect

Connecting Groups of Blocks

Simulink can connect a group of source blocks to a destination block or a source
block to a group of destination blocks.

To connect a group of source blocks to a destination block:

1 Select the source blocks.

Sine Wave §%
Sine Wavel [=]

To connect a source block to a group of destination blocks:
1 Select the destination blocks.

Display

Displayl

4-10

Connecting Blocks

2 Hold down Ctrl and left-click the source block.

Manually Connecting Blocks

Simulink allows you to draw lines manually between blocks or between lines
and blocks. You might want to do this if you need to control the path of the line
or to create a branch line.

Drawing a Line Between Blocks
To connect the output port of one block to the input port of another block:

1 Position the cursor over the first block’s output port. It is not necessary to
position the cursor precisely on the port. The cursor shape changes to
crosshairs.

- >

Constant & ain

2 Press and hold down the mouse button.

3 Drag the pointer to the second block’s input port. You can position the cursor
on or near the port or in the block. If you position the cursor in the block, the
line is connected to the closest input port. The cursor shape changes to
double crosshairs.

[1—H>

Constant G ain

4 Release the mouse button. Simulink replaces the port symbols by a
connecting line with an arrow showing the direction of the signal flow. You
can create lines either from output to input, or from input to output. The
arrow is drawn at the appropriate input port, and the signal is the same.

4-11

4 Creating a Model

>

Constant G ain

Simulink draws connecting lines using horizontal and vertical line segments.
To draw a diagonal line, hold down the Shift key while drawing the line.

Drawing a Branch Line

A branch line is a line that starts from an existing line and carries its signal to
the input port of a block. Both the existing line and the branch line carry the

same signal. Using branch lines enables you to cause one signal to be carried

to more than one block.

In this example, the output of the Product block goes to both the Scope block
and the To Workspace block.

=
Product
fedu Scope
To Wotksp ace

To add a branch line, follow these steps:
1 Position the pointer on the line where you want the branch line to start.
2 While holding down the Ctrl key, press and hold down the left mouse button.

3 Drag the pointer to the input port of the target block, then release the mouse
button and the Ctrl key.

You can also use the right mouse button instead of holding down the left mouse
button and the Ctrl key.

Drawing a Line Segment

You might want to draw a line with segments exactly where you want them
instead of where Simulink draws them. Or you might want to draw a line
before you copy the block to which the line is connected. You can do either by
drawing line segments.

4-12

Connecting Blocks

To draw a line segment, you draw a line that ends in an unoccupied area of the
diagram. An arrow appears on the unconnected end of the line. To add another
line segment, position the cursor over the end of the segment and draw another
segment. Simulink draws the segments as horizontal and vertical lines. To

draw diagonal line segments, hold down the Shift key while you draw the lines.

Moving a Line Segment
To move a line segment, follow these steps:

1 Position the pointer on the segment you want to move.

Froduct

2 Press and hold down the left mouse button.

[; I
S = = T F
Sine Wave

‘_:' FProduct

-
1

Constant

3 Drag the pointer to the desired location.

2 =
LA . 4
Sine Wave Froduct

A ind

—

Constant

4 Release the mouse button.

4-13

4 Creating a Model

Sine Wawve Froduct

'

Constant

To move the segment connected to an input port, position the pointer over the
port and drag the end of the segment to the new location. You cannot move the
segment connected to an output port.

Moving a Line Vertex
To move a vertex of a line, follow these steps:

1 Position the pointer on the vertex, then press and hold down the mouse
button. The cursor changes to a circle that encloses the vertex.

[l

Constant

Scope

2 Drag the pointer to the desired location.

=
*\9’

Constant

Scope

3 Release the mouse button.

‘*I:I
Constant . Scope

Inserting Blocks in a Line

You can insert a block in a line by dropping the block on the line. Simulink
inserts the block for you at the point where you drop the block. The block that
you insert can have only one input and one output.

4-14

Connecting Blocks

To insert a block in a line:

1 Position the pointer over the block and press the left mouse button.

<]
Y

<]
¥

3 Release the mouse button to drop the block on the line. Simulink inserts the
block where you dropped it.

s ,T} -]

Disconnecting Blocks

To disconnect a block from its connecting lines, hold down the Shift key, then
drag the block to a new location.

4-15

4 Creating a Model

4-16

Annotating Diagrams

Annotations provide textual information about a model. You can add an
annotation to any unoccupied area of your block diagram.

This sample model .
shows a constant signal < Annotations
heing input to a Scope.

1

1 >
Constant / Scope
This blodk generates This block displays its input

a.constantsignal graphically in a window that
with a walue of 1. looks like an oscilloscope.

To create a model annotation, double-click an unoccupied area of the block
diagram. A small rectangle appears and the cursor changes to an insertion
point. Start typing the annotation contents. Each line is centered within the
rectangle that surrounds the annotation.

To move an annotation, drag it to a new location.

To edit an annotation, select it:

¢ To replace the annotation, click the annotation, then double-click or drag the
cursor to select it. Then, enter the new annotation.

¢ To insert characters, click between two characters to position the insertion
point, then insert text.

¢ To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete an annotation, hold down the Shift key while you select the
annotation, then press the Delete or Backspace key.

To change the font of all or part of an annotation, select the text in the
annotation you want to change, then choose Font from the Format menu.
Select a font and size from the dialog box.

To change the text alignment (e.g., left, center, or right) of the annotation,
select the annotation and choose Text Alignment from the model window’s

Annotating Diagrams

Format or context menu. Then choose one of the alignment options (e.g.,
Center) from the Text Alignment submenu.

Using TeX Formatting Commands in Annotations

You can use TeX formatting commands to include mathematical and other
symbols and Greek letters in block diagram annotations.

Linearization of Double Pendul
81" =-10.6200781 + 302400782 1 ol 1 !

82" =320.240071 -132 6602702 s 7 = v :1
thetat

where

thetat dot2 thetat dot
81 = position of top joint

82 = position of bottom joint
¥ - -18.6200

Gain

-137 2400

Gaini

. L&D

thetaZ

thetaZ dot2 thetaZ dot

To use TeX commands in an annotation:
1 Select the annotation.

2 Select Enable TeX Commands from the Edit menu on the model window.

4-17

4 Creating a Model

3 Enter or edit the text of the annotation, using TeX commands where needed
to achieve the desired appearance.

Linearization of Double Pendulum

‘thetat" = -19.6200%thetat + 39 2400™thetaZ
thetaz" = 30 2400™thetat - 132 6603™theta?

where

tthetat = position of top joint
ttheta? = position of bottom joint

See “Mathematical Symbols, Greek Letters, and TeX Characters” in the
MATLAB documentation for information on the TeX formatting commands
supported by Simulink.

4 Deselect the annotation by clicking outside it or typing Esc.

Simulink displays the formatted text.

Linearization of Double Pendulum

81" = -19.6200701 + 30.2400762
B2" = 30.2400%81 -132 6603782

where

81 = position of top joint
82 = position of bottom joint

Creating Annotations Programmatically

You can use the Simulink add_block command to create annotations at the
command line or in an M-file program. Use the following syntax to create the
annotation:

add_block('built-in/Note', 'path/text','Position', [center_x, O,
0, center_yl);

where path is the path of the diagram to be annotated, text is the text of the
annotation, and [center_x, 0, 0, center_y] is the position of the center of
the annotation in pixels relative to the upper left corner of the diagram. For
example, the following sequence of commands

new_system('test')
open_system('test')

4-18

Annotating Diagrams

add_block('built-in/Gain', 'test/Gain', 'Position', [260, 125,
290, 155])

add_block('built-in/Note', 'test/programmatically created',
'Position', [550 0 0 180])

creates the following model:

File Edit WYiew Simulation Format Tools Help

E >
Gain

programmatically created

Ready 100 |odets v

4-19

4 Creating a Model

Creating Subsystems

4-20

As your model increases in size and complexity, you can simplify it by grouping
blocks into subsystems. Using subsystems has these advantages:

¢ It helps reduce the number of blocks displayed in your model window.

¢ It allows you to keep functionally related blocks together.

¢ It enables you to establish a hierarchical block diagram, where a Subsystem
block is on one layer and the blocks that make up the subsystem are on
another.

You can create a subsystem in two ways:

¢ Add a Subsystem block to your model, then open that block and add the
blocks it contains to the subsystem window.

¢ Add the blocks that make up the subsystem, then group those blocks into a
subsystem.

Creating a Subsystem by Adding the Subsystem
Block

To create a subsystem before adding the blocks it contains, add a Subsystem
block to the model, then add the blocks that make up the subsystem:

1 Copy the Subsystem block from the Signals & Systems library into your
model.

2 Open the Subsystem block by double-clicking it.

Simulink opens the subsystem in the current or a new model window,
depending on the model window reuse mode that you selected (see “Window
Reuse” on page 4-23).

Creating Subsystems

3 Inthe empty Subsystem window, create the subsystem. Use Inport blocks to
represent input from outside the subsystem and Outport blocks to represent
external output.

For example, the subsystem shown includes a Sum block and Inport and
Outport blocks to represent input to and output from the subsystem.

- i
2 g El1ut

" Sum

Creating a Subsystem by Grouping Existing Blocks

If your model already contains the blocks you want to convert to a subsystem,
you can create the subsystem by grouping those blocks:

1 Enclose the blocks and connecting lines that you want to include in the
subsystem within a bounding box. You cannot specify the blocks to be
grouped by selecting them individually or by using the Select All command.
For more information, see “Selecting Multiple Objects Using a Bounding
Box” on page 4-3.

For example, this figure shows a model that represents a counter. The Sum
and Unit Delay blocks are selected within a bounding box.

simout

i ToWokspace

]
i

Constant

When you release the mouse button, the two blocks and all the connecting
lines are selected.

4-21

4 Creating a Model

2 Choose Create Subsystem from the Edit menu. Simulink replaces the
selected blocks with a Subsystem block.

This figure shows the model after you choose the Create Subsystem
command (and resize the Subsystem block so the port labels are readable).

Constanit To akspace

Subsystemn

If you open the Subsystem block, Simulink displays the underlying system, as
shown below. Notice that Simulink adds Inport and Outport blocks to
represent input from and output to blocks outside the subsystem.

Iy N

In1 |-.+ = r'\1_:]

Sum Unit Delay

As with all blocks, you can change the name of the Subsystem block. You can
also use the masking feature to customize the block’s appearance and dialog
box. See Chapter 12, “Creating Masked Subsystems.”

Undoing Subsystem Creation

To undo creation of a subsystem by grouping blocks, select Undo from the Edit
menu. You can undo creation of a subsystem that you have subsequently
edited. However, the Undo command does not undo any nongraphical changes
that you made to the blocks, such as changing the value of a block parameter
or the name of a block. Simulink alerts you to this limitation by displaying a
warning dialog box before undoing creation of a modified subsystem.

4-22

Creating Subsystems

Model Navigation Commands

Subsystems allow you to create a hierarchical model comprising many layers.
You can navigate this hierarchy, using the Simulink Model Browser (see “The
Model Browser” on page 9-22) and/or the following model navigation
commands:

* Open

The Open command opens the currently selected subsystem. To execute the
command, choose Open from the Simulink Edit menu, press Enter, or
double-click the subsystem.

® Open block in new window

Opens the currently selected subsystem regardless of the Simulink window
reuse settings (see “Window Reuse” on page 4-23).

® Go to Parent

The Go to Parent command displays the parent of the subsystem displayed
in the current window. To execute the command, press Esc or select Go to
Parent from the Simulink View menu.

Window Reuse

You can specify whether Simulink model navigation commands use the current
window or a new window to display a subsystem or its parent. Reusing
windows avoids cluttering your screen with windows. Creating a window for
each subsystem allows you to view subsystems side by side with their parents
or siblings. To specify your preference regarding window reuse, select
Preferences from the Simulink File menu and then select one of the following
Window reuse type options listed in the Simulink Preferences dialog box.

Reuse Open Action Go to Parent (Esc) Action

Type

none Subsystem appears in a new Parent window moves to the
window. front.

reuse Subsystem replaces the Parent window replaces

parent in the current window. subsystem in current window

4-23

4 Creating a Model

4-24

Reuse Open Action Go to Parent (Esc) Action

Type

replace Subsystem appears in a new Parent window appears.
window. Parent window Subsystem window
disappears. disappears.

mixed Subsystem appearsinits own Parent window rises to front.
window. Subsystem window

disappears.

Labeling Subsystem Ports

Simulink labels ports on a Subsystem block. The labels are the names of Inport
and Outport blocks that connect the subsystem to blocks outside the subsystem
through these ports.

You can hide (or show) the port labels by

¢ Selecting the Subsystem block, then choosing Hide Port Labels (or Show
Port Labels) from the Format menu

¢ Selecting an Inport or Outport block in the subsystem and choosing Hide
Name (or Show Name) from the Format menu

¢ Selecting the Show port labels option in the Subsystem block’s parameter
dialog

This figure shows two models. The subsystem on the left contains two Inport
blocks and one Outport block. The Subsystem block on the right shows the
labeled ports.

In1 1 Out i
2 +
(%)—b i Qutt In2
n
Sum Subsystem
Subsystem with Inport and Outport blocks Subsysten with labeled ports

Controlling Access to Subsystems

Simulink allows you to control user access to subsystems that reside in
libraries. In particular, you can prevent a user from viewing or modifying the

Creating Subsystems

contents of a library subsystem while still allowing the user to employ the
subsystem in a model.

To control access to a library subsystem, open the subsystem’s parameter
dialog box and set its Access parameter to either ReadOnly or NoReadOrWrite.
The first option allows a user to view the contents of the library subsystem and
make local copies but prevents the user from modifying the original library
copy. The second option prevents the user from viewing the contents of,
creating local copies, or modifying the permissions of the library subsystem.
See the Subsystem block for more information on subsystem access options.
Note that both options allow a user to use the library system in models by
creating links (see “Working with Block Libraries” on page 5-29).

4-25

4 Creating a Model

Creating Conditionally Executed Subsystems

A conditionally executed subsystem is a subsystem whose execution depends on
the value of an input signal. The signal that controls whether a subsystem
executes is called the control signal. The signal enters the Subsystem block at
the control input.

Conditionally executed subsystems can be very useful when you are building
complex models that contain components whose execution depends on other
components.

Simulink supports the following types of conditionally executed subsystems:

® An enabled subsystem executes while the control signal is positive. It starts
execution at the time step where the control signal crosses zero (from the
negative to the positive direction) and continues execution while the control
signal remains positive. Enabled subsystems are described in more detail in
“Enabled Subsystems” on page 4-26.

o A triggered subsystem executes once each time a trigger event occurs. A
trigger event can occur on the rising or falling edge of a trigger signal, which
can be continuous or discrete. Triggered subsystems are described in more
detail in “Triggered Subsystems” on page 4-31.

® A triggered and enabled subsystem executes once on the time step when a
trigger event occurs if the enable control signal has a positive value at that
step. See “Triggered and Enabled Subsystems” on page 4-35 for more
information.

¢ A control flow subsystem executes one or more times at the current time step
when enabled by a control flow block that implements control logic similar to
that expressed by programming language control flow statements (e.g.,
if-then, while, do, and for. See “Modeling with Control Flow Blocks” on
page 4-42 for more information.

Enabled Subsystems

Enabled subsystems are subsystems that execute at each simulation step
where the control signal has a positive value.

An enabled subsystem has a single control input, which can be scalar or vector
valued.

4-26

Creating Conditionally Executed Subsystems

¢ If the input is a scalar, the subsystem executes if the input value is greater
than zero.

¢ Ifthe input is a vector, the subsystem executes if any of the vector elements
is greater than zero.

For example, if the control input signal is a sine wave, the subsystem is
alternately enabled and disabled, as shown in this figure. An up arrow signifies
enable, a down arrow disable.

Simulink uses the zero-crossing slope method to determine whether an enable
is to occur. If the signal crosses zero and the slope is positive, the subsystem is

enabled. If the slope is negative at the zero crossing, the subsystem is disabled.

Creating an Enabled Subsystem

You create an enabled subsystem by copying an Enable block from the Signals
& Systems library into a subsystem. Simulink adds an enable symbol and an
enable control input port to the Subsystem block.

Subsystem

Setting Output Values While the Subsystem Is Disabled. Although an enabled
subsystem does not execute while it is disabled, the output signal is still
available to other blocks. While an enabled subsystem is disabled, you can
choose to hold the subsystem outputs at their previous values or reset them to
their initial conditions.

4-27

4 Creating a Model

Open each Outport block’s dialog box and select one of the choices for the
Output when disabled parameter, as shown in the following dialog box:
® Choose held to cause the output to maintain its most recent value.

® Choose reset to cause the output to revert to its initial condition. Set the
Initial output to the initial value of the output.

— Outport

Provide an output port for a subsystem or model. The 'Dutput when
dizabled' and 'Initial output' parameters only apply to conditionally executed
subgpstems. When a conditionally executed subsystem iz disabled, the
output iz either held at itz last value or zet ta the 'Initial output’. The Initial
output' parameter can be specified as the empty matrix, []. in which caze
the initial output is equal to the output of the block feeding the outport.

=
F

Part number:

I Select an option to set the Outport output while the
Dutput when disabled: [Peld <=1 subsystem is disabled.

Initial output: -

il

|_The initial condition and the value when reset.

QK I Cancel | Help | Apply |

Setting States When the Subsystem Becomes Reenabled. When an enabled subsystem

executes, you can choose whether to hold the subsystem states at their previous
values or reset them to their initial conditions.

To do this, open the Enable block dialog box and select one of the choices for the
States when enabling parameter, as shown in the dialog box following:

® Choose held to cause the states to maintain their most recent values.

® Choose reset to cause the states to revert to their initial conditions.

Enable Part
(Place thiz block in a subsystem to create an enabled subspstem. ‘

=
F

States when enabling:

™ Show output port

QK I Cancel Help Lppli |

Select an option fo set the states when the subsystem is
reenabled.

4-28

Creating Conditionally Executed Subsystems

Outputting the Enable Control Signal. An option on the Enable block dialog box lets
you output the enable control signal. To output the control signal, select the
Show output port check box.

(Place thiz block in a subsystem to create an enabled subspstem. ‘

=
F

States when enabling: Iheld j
5 I

QK I Cancel | Help | Apply |

This feature allows you to pass the control signal down into the enabled
subsystem, which can be useful where logic within the enabled subsystem is
dependent on the value or values contained in the control signal.

Blocks an Enabled Subsystem Can Contain

An enabled subsystem can contain any block, whether continuous or discrete.
Discrete blocks in an enabled subsystem execute only when the subsystem
executes, and only when their sample times are synchronized with the

simulation sample time. Enabled subsystems and the model use a common
clock.

Note Enabled subsystems can contain Goto blocks. However, only state ports
can connect to Goto blocks in an enabled subsystem. See the Simulink demo
model, clutch, for an example of how to use Goto blocks in an enabled
subsystem.

For example, this system contains four discrete blocks and a control signal. The
discrete blocks are

¢ Block A, which has a sample time of 0.25 second

¢ Block B, which has a sample time of 0.5 second

¢ Block C, within the enabled subsystem, which has a sample time of 0.125
second

¢ Block D, also within the enabled subsystem, which has a sample time of 0.25
second

4-29

4 Creating a Model

The enable control signal is generated by a Pulse Generator block, labeled
Signal E, which changes from 0 to 1 at 0.375 second and returns to 0 at 0.875
second.

ﬂ_ﬂ_ﬂ Signal E

T »]
[+
J-L J_I_
3 Enable
z
Sine Mawve Block & Display (T_)_.' ; _@
Te=0.25 In1 P Out1
T==0.125
1]
» - plinz 0wz - -
- 2w - (2
Random Blodd B Soopa 2 z o
Humber Ts=05 Subsystem T - - - _ block D
Tt -l T==0.25

The chart below indicates when the discrete blocks execute.

| | | I I
1

- —l—= 4+ — 1 l l —— -
Signal E L0 SR N R S ——
Block D | | Y A_ | | A - Start of execution

______ - T, T for a block
Block C __|_L_A_A_A_J_|__|__ e
Block B _:_L_:_ _:__l_:____
Block A —— — - _|_4_1____

| |
0 125 .25 375 50 .625 .75 875 1.0
Time (sec)

Blocks A and B execute independently of the enable control signal because they
are not part of the enabled subsystem. When the enable control signal becomes
positive, blocks C and D execute at their assigned sample rates until the enable

4-30

Creating Conditionally Executed Subsystems

control signal becomes zero again. Note that block C does not execute at 0.875
second when the enable control signal changes to zero.

Triggered Subsystems

Triggered subsystems are subsystems that execute each time a trigger event
occurs.

A triggered subsystem has a single control input, called the ¢rigger input, that
determines whether the subsystem executes. You can choose from three types
of trigger events to force a triggered subsystem to begin execution:

® rising triggers execution of the subsystem when the control signal rises
from a negative or zero value to a positive value (or zero if the initial value
is negative).

e falling triggers execution of the subsystem when the control signal falls
from a positive or a zero value to a negative value (or zero if the initial value
is positive).

® either triggers execution of the subsystem when the signal is either rising
or falling.

Note In the case of discrete systems, a signal’s rising or falling from zero is
considered a trigger event only if the signal has remained at zero for more
than one time step preceding the rise or fall. This eliminates false triggers
caused by control signal sampling.

4-31

4 Creating a Model

For example, in the following timing diagram for a discrete system, a rising
trigger (R) does not occur at time step 3 because the signal has remained at zero
for only one time step when the rise occurs.

0 i p Time

Signal Level

A simple example of a triggered subsystem is illustrated.

ﬂ_ﬂ_ﬂ Trigger
Signal

F - Trigger
E—}In Out P zimout "
Sine Wave To Wakspace =
S In Out
Subsystem Tee- Ll Unit Delay

In this example, the subsystem is triggered on the rising edge of the square
wave trigger control signal.

Creating a Triggered Subsystem

You create a triggered subsystem by copying the Trigger block from the Signals
& Systems library into a subsystem. Simulink adds a trigger symbol and a
trigger control input port to the Subsystem block.

£

Subsystem

4-32

Creating Conditionally Executed Subsystems

To select the trigger type, open the Trigger block dialog box and select one of
the choices for the Trigger type parameter, as shown in the following dialog
box:

Block Parameters: Trigger: #

— Trigger Port

Flace thiz block in a subsystem to create a triggered subsystem.

=
F

<« Select the trigger type.

Trigger type: ([T

States when enabling: Iheld -

[~ Show output port

Dutput data ype: Iauto j

[¥ Enable zero crossing detection

QK I Cancel | Help | Apply |

Simulink uses different symbols on the Trigger and Subsystem blocks to
indicate rising and falling triggers (or either). This figure shows the trigger
symbols on Subsystem blocks.

EY T EXd
Subsyste m with Subsystem with Subsystem with
Rizing trigger Falling trigger Rising or Falling
trigger

Outputs and States Between Trigger Events. Unlike enabled subsystems, triggered
subsystems always hold their outputs at the last value between triggering
events. Also, triggered subsystems cannot reset their states when triggered;
states of any discrete blocks are held between trigger events.

4-33

4 Creating a Model

Outputting the Trigger Control Signal. An option on the Trigger block dialog box lets
you output the trigger control signal. To output the control signal, select the
Show output port check box.

Block Parameters: Trigger E |

— Trigger Port

Flace thiz block in a subsystem to create a triggered subsystem.

=
F

Trigger type: ([T

States when enabling: Iheld -
[~ Show output port. ¢ Select this check box to show the output port.
[Output data type; Iauto j

[¥ Enable zero crossing detection

QK I Cancel | Help | Apply |

The Output data type field allows you to specify the data type of the output
signal as auto, int8, or double. The auto option causes the data type of the

output signal to be set to the data type (either int8 or double) of the port to
which the signal is connected.

Function-Call Subsystems

You can create a triggered subsystem whose execution is determined by logic
internal to an S-function instead of by the value of a signal. These subsystems
are called function-call subsystems. For more information about function-call
subsystems, see “Function-Call Subsystems” in the “Implementing Block
Features” section of Writing S-Functions.

Blocks That a Triggered Subsystem Can Contain

Triggered systems execute only at specific times during a simulation. As a

result, the only blocks that are suitable for use in a triggered subsystem are

¢ Blocks with inherited sample time, such as the Logical Operator block or the
Gain block

¢ Discrete blocks having their sample times set to -1, which indicates that the
sample time is inherited from the driving block

4-34

Creating Conditionally Executed Subsystems

Triggered and Enabled Subsystems

A third kind of conditionally executed subsystem combines both types of
conditional execution. The behavior of this type of subsystem, called a ¢triggered
and enabled subsystem, is a combination of the enabled subsystem and the
triggered subsystem, as shown by this flow diagram.

Trigger event

Is
the enable
input signal
>07

Don't execute the subsystem

Execute the subsystem

A triggered and enabled subsystem contains both an enable input port and a
trigger input port. When the trigger event occurs, Simulink checks the enable
input port to evaluate the enable control signal. Ifits value is greater than zero,
Simulink executes the subsystem. If both inputs are vectors, the subsystem
executes if at least one element of each vector is nonzero.

The subsystem executes once at the time step at which the trigger event occurs.

Creating a Triggered and Enabled Subsystem

You create a triggered and enabled subsystem by dragging both the Enable and
Trigger blocks from the Signals & Systems library into an existing subsystem.
Simulink adds enable and trigger symbols and enable and trigger and enable
control inputs to the Subsystem block.

n

Subsystem

4-35

4 Creating a Model

You can set output values when a triggered and enabled subsystem is disabled
as you would for an enabled subsystem. For more information, see “Setting
Output Values While the Subsystem Is Disabled” on page 4-27. Also, you can
specify what the values of the states are when the subsystem is reenabled. See
“Setting States When the Subsystem Becomes Reenabled” on page 4-28.

Set the parameters for the Enable and Trigger blocks separately. The
procedures are the same as those described for the individual blocks.

A Sample Triggered and Enabled Subsystem

A simple example of a triggered and enabled subsystem is illustrated in the
model below.

Enable

Trigger
Signal 9d

Signal

ST

Sine Miave Display

* Subsystem

Enable Trigger

1
In z out
Unit Delay

Creating Alternately Executing Subsystems

You can use conditionally executed subsystems in combination with Merge
blocks to create sets of subsystems that execute alternately, depending on the
current state of the model. For example, the following figure shows a model
that uses two enabled blocks and a Merge block to model a full-wave rectifier,
that is, a device that converts AC current to pulsating DC current.

4-36

Creating Conditionally Executed Subsystems

aw
Sine Wawe $ et
n Ercble
lh Cutl—
. -_i__ L — In Gimin Ot
o | |
% M —
M Seope
Gain | -
¥ N -7
- e
pln cur Ermble
-
In Eain Cut

In this example, the block labeled “pos” is enabled when the AC waveform is
positive; it passes the waveform unchanged to its output. The block labeled
“neg” is enabled when the waveform is negative; it inverts the waveform. The
Merge block passes the output of the currently enabled block to the Mux block,
which passes the output, along with the original waveform, to the Scope block.

The Scope creates the following display.

<) Scope =] B3
lem oo ABB B L 5

4-37

4 Creating a Model

Conditional Execution Behavior

To speed simulation of a model, Simulink by default avoids unnecessary
execution of blocks connected to Switch, Multiport Switch, and conditionally
executed blocks, a behavior called conditional execution (CE) behavior. You can
disable this behavior for all Switch and Multiport Switch blocks in a model or
for specific conditionally executed subsystems (see “Disabling Conditional
Execution Behavior” on page 4-40).

The following model illustrates conditional execution behavior.

+H +H+
+H +HH +H
Pulss ’
Genemior :
4 1
n
i Pe{ini Cul S-:chpei
Constant Enabked Gain
Subsy=stam

Simulink computes the outputs of the Constant block and Gain block only
when the enabled subsystem executes (i.e., at time steps 0, 4, 8, and so on). This
is because the output of the Constant block is required and the input of the
Gain block changes only when the enabled subsystem executes. When CE
behavior is off, Simulink computes the outputs of the Constant and Gain blocks
at every time step, regardless of whether the outputs are needed or change.

In this example, Simulink regards the enabled subsystem as defining an
execution context for the Constant and Gain blocks. Although the blocks reside
graphically in the model’s root system, Simulink invokes the blocks’ methods
during simulation as if the blocks reside in the enabled subsystem.

Propagating Execution Contexts

In general, Simulink defines an execution context as a set of blocks to be
executed as a unit. At model compilation time, Simulink associates an
execution context with the model’s root system and with each of its nonvirtual
subsystems. Initially, the execution context of the root system and each
nonvirtual subsystem is simply the blocks that it contains.

4-38

Creating Conditionally Executed Subsystems

When compiling a model, Simulink examines each block in the model to
determine whether it meets the following conditions:

¢ Its output is required only by a conditionally executed subsystem or its input
changes only as a result of the execution of a conditionally executed.

¢ The subsystem’s execution context can propagate across its boundaries.

¢ The output of the block is not a testpoint (see “Working with Test Points” on
page 6-35).

® The block is allowed to inherit its conditional execution context.

Simulink does not allow some built-in blocks, e.g., the Delay block, ever to
inherit their execution context. Also, S-Function blocks can inherit their
execution context only if they specify the

SS_OPTION_CAN_BE_CALLED CONDITIONALLY option.

e The block is not a multirate block.

¢ [ts sample time is inherited (-1) or constant (inf).

If a block meets these conditions and execution context propagation is enabled
for the associated conditionally executed subsystem (see “Disabling
Conditional Execution Behavior” on page 4-40), Simulink moves the block into
the execution context of the subsystem. This ensures that the block’s methods
are executed during the simulation loop only when the corresponding
conditionally executed subsystem executes.

Behavior for Switch Blocks

This behavior treats the input branches of a Switch or Multiport Switch block
as invisible, conditionally executed subsystems, each of which has its own
execution context that is enabled only when the switch’s control input selects
the corresponding data input. As a result, switch branches execute only when
selected by switch control inputs.

Displaying Execution Contexts

To determine the execution context to which a block belongs, select Sorted
order from the model window’s Format menu. Simulink displays the sorted
order index for each block in the model in the upper right corner of the block.
The index has the format s:b, where s specifies the subsystem to whose
execution context the block, b, belongs.

4-39

4 Creating a Model

Simulink also expands the sorted order index of conditionally executed
subsystems to include the system ID of the subsystem itself in curly brackets
as illustrated in the following figure.

+
Vo
+H +H+ +H
Fulss
Genar@ator ?‘
T
] Il oA T)
1 —=]im Ot Scope
Constant Enablad Gain
Subsystam

In this example, the sorted order index of the enabled subsystemis 0:1{1}. The
0 indicates that the enabled subsystem resides in the model’s root system. The
first 1 indicates that the enabled subsystem is the second block on the root
system’s sorted list (zero-based indexing). The 1 in curly brackets indicates
that the system index of the enabled subsystem itself is 1. Thus any block
whose system index is 1 belongs to the execution context of the enabled
subsystem and hence executes when it does. For example, the Constant block’s
index, 1:0, indicates that it is the first block on the sorted list of the enabled
subsystem, even though it resides in the root system.

Disabling Conditional Execution Behavior

To disable conditional execution behavior for all Switch and Multiport Switch
blocks in a model, turn off the Conditional input branch execution
optimization on the Optimization pane of the Configuration Parameters
dialog box (see “The Optimization Pane” on page 10-43). To disable conditional
execution behavor for a specific conditionally executed subsystem, uncheck the
Propagate execution context across subsystem boundary option on the
subsystem’s parameter dialog box.

Even if this option is enabled, a subsystem’s execution context cannot
propagate across its boundaries under either of the following circumstances:

® The subsystem is a triggered subsystem with a latched input port.

4-40

Creating Conditionally Executed Subsystems

® The subsystem has one or more output ports that specify an initial condition,
i.e., whose initial condition is other than []. In this case, a block connected
to the subsystem’s output cannot inherit the subsystem’s execution context.

Displaying Execution Context Bars

Simulink can optionally display bars next to the ports of subsystems across
which execution contexts cannot propagate, i.e., on subsystems from which no
block can inherit its execution context.

H+ HH+
REREN Execution confext bars

Fulss
Genar@ator

1 ——pefin outf——— w1)

Constant

Enablec
Subsystam

To display the bars, select Execution context indicator from the model
editor’s Format -> Block Displays menu.

4-41

4 Creating a Model

Modeling with Control Flow Blocks

4-42

The control flow blocks are used to implement the logic of the following C-like
control flow statements in Simulink:

® for

e if-else

® switch

¢ while (includes while and do-while control flow statements)

Although all the preceding control flow statements are implementable in

Stateflow , these blocks are intended to provide Simulink users with tools that
meet their needs for simpler logical requirements.

Creating Conditional Control Flow Statements

You create C-like conditional control flow statements using ordinary
subsystems and the following blocks from the Subsystems library.

C Statement Blocks Used
if-else If, Action Port
switch Switch Case, Action Port

Modeling with Control Flow Blocks

If-Else Control Flow Statements

The following diagram depicts a generalized if-else control flow statement
implementation in Simulink.

i 0 + L it}
Pl -
u T liation
st -) ﬁ Action subsystem 1 blacks fior
. "k if condition
. =i { T
=))
dse ﬁ Action subsystem 2

dze{}

Action subsystem 3

Construct a Simulink if-else control flow statement as follows:

® Provide data inputs to the If block for constructing if-else conditions.

Inputs to the If block are set in the If block properties dialog. Internally, they
are designated as u1, u2,..., un and are used to construct output
conditions.

® Set output port if-else conditions for the If block.

Output ports for the If block are also set in its properties dialog. You use the
input values u1, u2, ..., untoexpress conditions for the if, elseif, and else
condition fields in the dialog. Of these, only the if field is required. You can
enter multiple elseif conditions and select a check box to enable the else
condition.

¢ Connect each condition output port to an Action subsystem.

Each if, elseif, and else condition output port on the If block is connected to
a subsystem to be executed if the port’s case is true. You create these
subsystems by placing an Action Port block in a subsystem. This creates an
atomic Action subsystem with a port named Action, which you then connect
to a condition on the If block. Once connected, the subsystem takes on the
identity of the condition it is connected to and behaves like an enabled
subsystem.

4-43

4 Creating a Model

4-44

For more detailed information, see the reference topics for the If and Action
Port blocks.

Note All blocks in an Action subsystem driven by an If or Switch Case block
must run at the same rate as the driving block.

Switch Control Flow Statements

The following diagram depicts a generalized switch control flow statement
implementation in Simulink.

Casedetion

—{u case[2]:
- Action subsy=stam 1 blacks far
. T caze[1] condition
default: . .
Action subsystem 2
Switch-csse

Action subsystem 2

Construct a Simulink switch control flow statement as follows:

¢ Provide a data input to the argument input of the Switch Case block.

The input to the Switch Case block is the argument to the switch control flow
statement. This value determines the appropriate case to execute.
Noninteger inputs to this port are truncated.

¢ Add cases to the Switch Case block based on the numeric value of the
argument input.
You add cases to the Switch Case block through the properties dialog of the
Switch Case block. Cases can be single or multivalued. You can also add an
optional default case, which is true if no other cases are true. Once added,
these cases appear as output ports on the Switch Case block.

Modeling with Control Flow Blocks

¢ Connect each Switch Case block case output port to an Action subsystem.

Each case output of the Switch Case block is connected to a subsystem to be
executed if the port’s case is true. You create these subsystems by placing an
Action Port block in a subsystem. This creates an atomic subsystem with a
port named Action, which you then connect to a condition on the Switch Case
block. Once connected, the subsystem takes on the identity of the condition
and behaves like an enabled subsystem. Place all the block programming
executed for that case in this subsystem.

For more detailed information, see the reference topics for the Switch Case and
Action Port blocks.

Note After the subsystem for a particular case is executed, an implied break
is executed that exits the switch control flow statement altogether. Simulink
switch control flow statement implementations do not exhibit “fall through”
behavior like C switch statements.

Creating lterator Control Flow Statements

You create C-like iterator control flow statements using subsystems and the
following blocks from the Subsystems library.

C Statement Blocks Used
do-while While Iterator
for For Iterator
while While Iterator

4-45

4 Creating a Model

4-46

While Control Flow Statements

The following diagram depicts a generalized C-like while control flow
statement implementation in Simulink.

cord whike {

| .
L
- L
In1 Wihile Memtr
Irwhike { ...}

While subsystem

N I blocks to execute ¢
A
.
.

In a Simulink while control flow statement, the While Iterator block iterates
the contents of a While subsystem, an atomic subsystem. For each iteration of
the While Iterator block, the block programming of the While subsystem
executes one complete path through its blocks.

Construct a Simulink while control flow statement as follows:

¢ Place a While Iterator block in a subsystem.

The host subsystem becomes a while control flow statement as indicated by
its new label, while {...}. These subsystems behave like triggered
subsystems. This subsystem is host to the block programming you want to
iterate with the While Iterator block.

® Provide a data input for the initial condition data input port of the While
Iterator block.
The While Iterator block requires an initial condition data input (labeled 1C)
for its first iteration. This must originate outside the While subsystem. If
this value is nonzero, the first iteration takes place.

¢ Provide data input for the conditions port of the While Iterator block.

Conditions for the remaining iterations are passed to the data input port
labeled cond. Input for this port must originate inside the While subsystem.

Modeling with Control Flow Blocks

® You can set the While Iterator block to output its iterator value through its
properties dialog.
The iterator value is 1 for the first iteration and is incremented by 1 for each
succeeding iteration.

® You can change the iteration of the While Iterator block to do-while through
its properties dialog.
This changes the label of the host subsystem todo {...} while. With a
do-while iteration, the While Iteration block no longer has an initial
condition (IC) port, because all blocks in the subsystem are executed once
before the condition port (labeled cond) is checked.

For specific details, see the reference topic for the While Iterator block.

For Control Flow Statements

The following diagram depicts a generalized for control flow statement
implementation in Simulink.

-~
-
- - » Fo
- r
- - Itemior
Ind
For hemtor
Int far{ ... %
For sub=ystern . .
e blocks to execute —

In a Simulink for control flow statement, the For Iterator block iterates the
contents of a For Iterator Subsystem, an atomic subsystem. For each iteration
of the For Iterator block, the block programming of the For Iterator Subsystem
executes one complete path through its blocks.

Construct a Simulink for control flow statement as follows:

® Drag a For Iterator Subsystem block from the Library Browser or Library
window into your model.

4-47

4 Creating a Model

® You can set the For Iterator block to take external or internal input for the
number of iterations it executes.

Through the properties dialog of the For Iterator block you can set it to take

input for the number of iterations through the port labeled N. This input

must come from outside the For Iterator Subsystem.

You can also set the number of iterations directly in the properties dialog.
® You can set the For Iterator block to output its iterator value for use in the

block programming of the For Iterator Subsystem.

The iterator value is 1 for the first iteration and is incremented by 1 for each

succeeding iteration.

The For Iterator block works well with the Assignment block to reassign values
in a vector or matrix. This is demonstrated in the following example. Note the
matrix dimensions in the data being passed.

s RS iy o) oun | E2bE

Cutl
Constant

-~ Forsubsystam -
- .
-7 H"M\H
-
e T -
.-f// -H-H\'-H.__

— -
- -
'__.-" -

17 Ut =

A

(bl Y ondstre | dowble].]..dmbl[] . ot
=3 s = [2 1 . = [2x 1 = [
Uz = YRG) ¥
In1 Selector v
bl X X Cutd
Selestor Trgono meathc
Far double
ltemtor

¥
[5)

Function
For

Assignment

4-48

Modeling with Control Flow Blocks

The above example outputs the sin value of an input 2-by-5 matrix (2 rows, 5
columns) using a For subsystem containing an Assignment block. The process
is as follows:

1 A 2-by-5 matrix is input to the Selector block and the Assignment block.

2 The Selector block strips off a 2-by-1 matrix from the input matrix at the

column value indicated by the current iteration value of the For Iterator
block.

3 The sine of the 2-by-1 matrix is taken.
4 The sine value 2-by-1 matrix is passed to an Assignment block.

5 The Assignment block, which takes the original 2-by-5 matrix as one of its
inputs, assigns the 2-by-1 matrix back into the original matrix at the column
location indicated by the iteration value.

The rows specified for reassignment in the property dialog for the
Assignment block in the above example are [1,2]. Because there are only two
rows in the original matrix, you could also have specified -1 for the rows, i.e.,
all rows.

Note Experienced Simulink users will note that the sin block is already
capable of taking the sine of a matrix. The above example uses the sin block
only as an example of changing each element of a matrix with the
collaboration of an Assignment block and a For Iterator block.

Comparing Stateflow and Control Flow Statements

Stateflow already possesses the logical capabilities of the Simulink control flow
statements. It can call Function-Call subsystems (see “Function-Call
Subsystems” on page 4-34) on condition or iteratively. However, since
Stateflow provides a great deal more in logical sophistication, if your
requirements are simpler, you might find the capabilities of the Simulink
control flow blocks sufficient for your needs. In addition, the control flow
statements offer a few advantages, which are listed in the following topics.

4-49

4 Creating a Model

4-50

Sample Times

The Function-Call subsystems that Stateflow can call are triggered
subsystems. Triggered subsystems inherit their sample times from the calling
block. However, the Action subsystems used in if-else and switch control
flow statements and the While and For subsystems that make up while and
for control flow statements are enabled subsystems. Enabled subsystems can
have their own sample times independent of the calling block. This also allows
you to use more categories of blocks in your iterated subsystem than in a
Function-Call subsystem.

Resetting of States When Reenabled

Simulink control flow statement blocks allow you to retain or reset (to their
initial values) the values of states for Action, For, and While subsystems when
they are reenabled. For detailed information, see the references for the While
Iterator and For Iterator blocks regarding the parameter States when
starting and the reference for the Action Port block regarding the parameter
States when execution is resumed.

Using Stateflow with the Control Flow Blocks

You might want to consider the possibility of using Stateflow and the Simulink
control flow blocks together. The following sections contain some examples that
give you a few suggestions on how to combine the two.

Using Stateflow with If-Else or Switch Subsystems. In the following model, Stateflow
places one of a variety of values in a Stateflow data object. Upon chart
termination, a Simulink if control flow statement uses that data to make a
conditional decision.

case[1]
data_in ﬁ’ data_out il ocase[2]:
defaut:
F
SwitchGass case; {1
Shart i ounl——
case; {1 action_1
»{in oo
ki
defaur {} | *etien 2
o [St

ation_defauk

Modeling with Control Flow Blocks

In this case, control is given to a Switch Case block, which uses the value to
choose one of several case subsystems to execute.

Using Stateflow with While Subsystems. In the following diagram, Stateflow
computes the value of a data object that is available to a condition input of a
While Iterator block in do-while mode.

da { ...} while

- While subsystem

do {
cotd
+while]

Whike Memtor

h 4

remainder of
subsystem
blocks

The While Iterator block has iterative control over its host subsystem, which
includes the Stateflow Chart block. In do-while mode, the While block is
guaranteed to operate for its first iteration value (= 1). During that time, the
Stateflow chart is awakened and sets a data value used by the While Iterator
block, which is evaluated as a condition for the next while iteration.

In the following diagram, the While block is now set in while mode. In this
mode, the While Iterator block must have input to its initial condition port in
order to execute its first iteration value. This value must come from outside the
While subsystem.

4-51

4 Creating a Model

In while { ..} Out

7 Whilke subsystem -~

| cond whilke {

(O —we |

Whilke t2mtor

remainder of
subsgystem
blocks
Shart

If the initial condition is true, the While Iterator block wakes up the Stateflow
chart and executes it to termination. During that time the Stateflow chart sets
data, which the While Iterator condition port uses as a condition for the next
iteration.

4-52

Referencing Models

Referencing Models

Simulink allows you to include models in other models as blocks, a feature
called model referencing. You create references to other models by creating
instances of Model blocks in a parent model (see “Creating a Model Reference”
on page 4-54). Each instance of a Model block in a parent model represents a
reference to another model called a referenced model. A Model block displays
inputs and outputs corresponding to the root-level inputs and outputs of the
model it references, enabling you to incorporate the referenced model into the
block diagram of the parent model.

During simulation, Simulink invokes an automatically generated S-function,
called the referenced model’s simulation target, to compute the Model block’s
outputs as needed. If the simulation target does not exist at the beginning of a
simulation, Simulink generates it from the referenced model. If the simulation
target does exist, Simulink checks whether the referenced model has changed
significantly since the target was last generated. If so, Simulink regenerates
the target to reflect the changes to the referenced model (see “Building
Simulation Targets” on page 4-66 for more information).

Note Real-Time Workshop similarly generates library modules, called
Real-Time Workshop targets, for the referenced models and a stand-alone
executable for the root model, with the parent target invoking the referenced
model targets to compute the referenced model outputs as needed. See the
Real-Time Workshop documentation for more information.

A referenced model can itself reference other models. The topmost model in a
hierarchy of model references is called the root model. A parent model can
contain multiple references to the same model as long as the referenced model
does not define global data. You can parameterize model references such that
each reference to a model can specify different values for variables that define
the model’s behavior (see “Parameterizing Model References” on page 4-56 for
more information).

Simulink includes a set of demos that illustrate various aspects of model
referencing. To run the demos from the MATLAB command line, enter

mdlrefdemos

4-53

4 Creating a Model

Model Referencing Versus Subsystems

Like subsystems, model referencing allows you to organize large models
hierarchically, with Model blocks representing major subsystems. However,
model referencing has significant advantages over subsystems in many
applications. The advantages include:

¢ Modular development

You can develop the referenced model independently from the models in
which it is used.

¢ Inclusion by reference

You can reference a model multiple times in another model without having
to make redundant copies and multiple models can reference the same
model.

¢ Incremental loading

The referenced model is not loaded until it is needed, speeding up model
loading (see “Incremental Loading” on page 4-65 for more information).

¢ Incremental code generation

Simulink and Real-Time Workshop create binaries to be used in simulations
and stand-alone applications to compute the outputs of the included blocks.
If the binaries are up-to-date, that is, the binaries are not older than the
models from which they were generated, no code generation occurs when
models that reference them are simulated or compiled.

Simulink provides a tool to convert atomic subsystems to stand-alone models
and to reconfigure the root model by replacing the subsystems with Model
blocks. For further information, see “Converting Subsystems to Model
References” on page 4-67. It also provides a command, find_mdlrefs, to find
all models directly or indirectly referenced by a given model.

Creating a Model Reference
To create a reference to a model in another model:

1 If the model is not on the MATLAB path, add it to the MATLAB path.

2 Enable the parent model’s Inline parameters optimization if it is not
already enabled (see “Inline parameters” on page 10-44).

4-54

Referencing Models

3 Create an instance of the Model block in the parent model (for example, by
opening the Library Browser and dragging an instance from the Ports &
Subsystems block library to the parent model).

g [l

File Edit WYiew Simulation Format Tools Help

D|@H§|%E|DQ|> IINormaI |

=Enter Model Hame:

Model

Fl1o0% | [|odets v

4 Open the newly created Model block’s parameter dialog box.

21|

Block Parameters: Model3

—Model Reference
Specify the name of a Simulink madel. During update diagram, simulation, and code
generation, Simulink generates code for the referenced model and uzes the generated
code. These operations alzo refresh Model blocks to reflect graphical changes, such
as humber of ports, in the referenced model. Ta refresh without performing these
operations, select Edit-»Refresh Model Blocks.

P.
Model name [without the .mdl extenzion]:

|<Enter Model Mame::

Model arguments:

Model argument values [for this instance]:

Open todel |

Ok I Lancel | Help | Apply |

5 Enter the name of the referenced model in the parameter dialog box’s Model
name field. The referenced model must be configured to use a fixed-step

solver.

6 Click OK to apply the model name and close the dialog box.

4-55

4 Creating a Model

If the referenced model contains any root-level inputs or outputs, Simulink
displays corresponding input and output ports on the Model block instance that
you have created. Use these ports to connect the reference model to other ports
in the parent model.

Clowent -0l

File Edit Yiew Simulation Format Tools Help

D|@H§|%E|DQ|> IINormaI

counter
Count

WMol Scops

Fl1o0% |odets 4

Note See “Referenced Model I/0” on page 4-63 for information on connecting
blocks in a parent model to a model that has bus inputs or outputs.

Opening a Referenced Model

To open a referenced model, select the Model block that references the model.
Then select Open Model from the model editor’s Edit menu or from the block’s
context menu.

Parameterizing Model References

Simulink allows you to parameterize references to models, i.e., use workspace
variables to determine their behavior. You can parameterize a model in the
following ways:

¢ Use global nontunable parameters in the MATLAB workspace or in a model
workspace to determine the behavior of all references to a given model.

A global nontunable parameter is a MATLAB variable or a
Simulink.Parameter object whose storage class is auto. The value of such a
variable cannot be changed during simulation.

4-56

Referencing Models

¢ Use global tunable parameters in the MATLAB workspace to determine the
behavior of all references to a given model in the model.

A global tunable parameter is a parameter specified by an object of
Simulink.Parameter class that has a storage class other than auto. The
value of such a variable can be changed during simulation, allowing you to
change the behavior of the referenced models.

® Use model arguments in the model to specify different behavior for different
references to the same model (see next section).

Model Referencing and the Inline Parameters Optimization

Simulink does not support the of f setting of the inline parameters
optimization (see “Inline parameters” on page 10-44) for models that contain
Model blocks. Simulink ignores the settings in the Tunable Parameter dialog
box (see “Model Parameter Configuration Dialog Box” on page 10-47) for
models that contain Model blocks and for referenced models. To help you
convert existing models to model referencing, Simulink provides a command
that converts tunable parameters specified in the Tunable Parameter dialog
box, which do not work with model referencing, to global tunable parameters
that do work with model referencing. Type

help tunablevars2parameterobjects

at the MATLAB command line for more information.

Using Model Arguments

Model arguments let you create references to the same model that behave
differently. For example, suppose you want each reference to a counter model
to be able to specify initial and increment values for the counter where the
specified values can differ from reference to reference. Using model arguments
to parameterize references to the counter model allows you to do this.

Note Run the mdlref paramargs demo to see parameterized model
references in action.

4-57

4 Creating a Model

Using model arguments requires that you

¢ Declare model workspace variables that determine the model’s behavior as
model arguments

¢ Assign values to the model arguments in each reference to the parameterized
model

The following sections explain how to perform these tasks.

Declaring Model Arguments

To declare some or all of a model’s model workspace variables as model
arguments:

1 Open the referenced model.
2 Open the Model Explorer.

3 Select the model’s workspace in the Model Explorer.

& Model Explorer

B[]
File Edt ¥iew Tools Add Help
oz smax[EHc%Hf0 D 4b [snmaea
”Search. Ihy Marne | Hame I Search ‘
Model Higrarchy Contents of: kodel Workspace Model Workspace
: ork: d
E--@Slmu\lnkﬂuut | NamelVa\ue' DiataTppe | Complexity At
o ﬁBass Workspace D ata source: I MDLFile [read/write] LI
-Eparsnt _ | |
E-Ecuuntsr Impart From MAT-File | Export Ta MAT-File| Clear Workspace
---ﬁMudelWDrkspace Moddl S o th ol
& Configuialion [Aclive] ndel arguments [for referencing this modsi):
- b Cade for counter
L st IS E—
«| | || Contents | Search Results Gevert | £oply |
Y

4-58

Referencing Models

4 Ifyou have not already done so, use the Model Explorer to create MATLAB
variables in the model’s workspace that determine the model’s behavior.

& Model Explorer (=] 1|
File Edit Yiew Tools Add Help

D@(ieax[BHcwH70 @B +r[[snrEa=d

HSaamh Iby Name j ame: I Search |
Model Hierarchy Contents of. Model Workspace Model Workspace
= f—_ Wwork: d
E @S'ml“hnk Raot |Name IVa\uel DataType b
‘Ease ‘Workspace F ini_vale 0 [Drata source: I MDL-File [read/write] LI
& Baren B e Impart From MAT File | Export To MAT-File | Clear Warkspace |
- counter mpart From File | Export To File| ClearWorkspace
%Eﬂnliguratinn lactive) Madel argurents [for referencing this model);
: @Eﬂde far counter
| e a4 | 2
2| |]| Contents e Bevert | Help | Apply |

5 Enter the names of the workspace variables that you want to declare as
model arguments as a comma-separated list in the Model arguments field
in the model workspace’s dialog box.

2 Model Explorer 1ol x|
File Edit Wiew Tools Add Help

(D smmxBHEMIFO Da4b][?nmaed

”Sealch' Iby Marme ;I Marne: I Search |
HModel Hierarchy Contents of: Model Workspace Model Workspace
Wwork: d
E @S\muhnk Fiact | Name |Value| DataType e 0
‘Base ‘Warkspace B init_value 0 Data source: I MOL-File [read/write] LI
Wl parent
é jcnunter H i 1 Import From MAT-F\Iel Export To MAT-File EIearWurkspaceI
‘Mnda\w'nrkspaca 7 i
%Ennfiguratmn {Active] Madel arguments [for referencing this model);
H @Ende For courter Ilnlt_va\ue,lncr
s 2 EE——
4] | || Contents | SearchResuts | Hevert i Help Apply |

4-59

4 Creating a Model

6 Click the Apply button on the dialog box to confirm the entered names.

Note If a model does not declare a variable in its workspace as a model
argument, the variable has the same value in every reference to the model
and cannot be tuned from a parent model. For example, suppose that a model
defines a variable k in its workspace but does not declare it as a model
argument. Further, suppose that the model assigns a value of 5 to k in its
workspace. Then the value of k will be 5 in every reference to the model in
other models.

Assigning Values to Model Arguments

If a model declares model arguments, you must assign values to the model
arguments in each reference to the model, i.e., in each Model block that
references the model.

To assign values to a model’s model arguments in a Model block that references
the model:

1 Open the Model block’s parameter dialog box.

E1Block Parameters: Model e |

—Model Reference

Specify the name of a Simulink madel. During update diagram, simulation, and code
generation, Simulink generates code for the referenced model and uzes the generated
code. These operations alzo refresh Model blocks to reflect graphical changes, such
as humber of ports, in the referenced model. Ta refresh without performing these
operations, select Edit-»Refresh Model Blocks.

=
F

Model name [without the .mdl extenzion]:

Icounter

Model arguments:

Iinit_value,inc:r

Model argument values [for this instance]:

Open todel |

Apply |

Qg Lancel

4-60

Referencing Models

2 Enter a comma-delimited list of values for the parameter arguments in the
Model argument values field in the same order in which the arguments
appear in the Model arguments field.

E1Block Parameters: Model

—Model Reference

21|

Specify the name of a Simulink madel. During update diagram, simulation, and code
generation, Simulink generates code for the referenced model and uzes the generated
code. These operations alzo refresh Model blocks to reflect graphical changes, such
as humber of ports, in the referenced model. Ta refresh without performing these
operations, select Edit-»Refresh Model Blocks.

=
F

Model name [without the .mdl extenzion]:

Icounter

Model arguments:

Iinit_value,inc:r

Model argument values [for this instance]:
J1.1

Open todel |

Ok | Lancel |

Apply |

You can enter the values as literal values, variable names, MATLAB
expressions, and Simulink parameter objects. The value for a particular
argument must have the same dimensions and data and numeric type as the
model workspace variable that defines the argument.

Model Block Sample Times

The sample times of a Model block are the sample times of the model that it
references. If the referenced model needs to run at specific rates, the referenced
model’s simulation target specifies the required rates. Otherwise, the target
specifies that the referenced model inherits its sample time from the parent

model. Specifically, a referenced model inherits its sample time if all the
following conditions are true:

® None of its blocks specify sample times (other than inherited and constant).
¢ It does not have any continuous states.

¢ It does not contain any blocks that use absolute time.

¢ It specifies a fixed-step solver but not a fixed step size.

4-61

4 Creating a Model

¢ After sample time propagation, it has only one sample time (not counting
constant and triggered sample time).

¢ It does not contain any blocks that preclude sample time inheritance (see
“Blocks That Preclude Sample-Time Inheritance” on page 4-62)

You can use a referenced model that inherits its sample time anywhere in a
parent model. By contrast, you cannot use a referenced model that has intrinsic
sample times in a triggered, function call, or for an iterator subsystem.
Further, to avoid rate transition errors, you must ensure that blocks connected
to a referenced model with intrinsic samples times operate at the same rates
as the referenced model.

To determine whether a referenced model inherits its sample time, set the
Periodic sample time constraint on the Solver configuration parameters
dialog pane to Ensure sample time independent (see “Periodic sample time
constraint” on page 10-36). If the model is unable to inherit sample times, this
setting causes Simulink to display an error message when generating the
referenced model’s simulation (or Real-Time Workshop) target. To determine
the intrinsic sample time of a referenced model (or the fastest intrinsic sample
time for multirate referenced models), first update a model that references it.
Then select a Model block that references the referenced model and enter the
following command at the MATLAB command line:

get_param(gcb, 'CompiledSampleTime')

Blocks That Preclude Sample-Time Inheritance

Using a block whose output depends on an inherited sample time in a
referenced model can cause a simulation to produce unexpected or erroneous
results. For this reason, when building a simulation target for a model that
does not need to run at a specified rate, Simulink checks whether the model
contains any blocks, including any S-Function blocks, whose outputs are
functions of the inherited simulation time. If so, Simulink generates a
simulation target that specifies a default sample time and displays an error if
you have set the Periodic sample time constraint on the Solver configuration
parameters dialog pane to Ensure sample time independent (see “Periodic
sample time constraint” on page 10-36).

4-62

Referencing Models

The outputs of the following built-in blocks depend on their inherited sample
time and hence preclude a referenced model from inheriting its sample time
from the parent model:

® Discrete-Time Integrator

* From Workspace (if it has input data that contains time)
¢ Probe (if probing sample time)

¢ Rate Limiter

® Sine Wave

Simulink assumes that the output of an S-function does not depend on
inherited sample time unless the S-function explicitly declares the contrary
(see “Writing S-Functions” for information on how to create S-functions that
declare whether their output depends on their inherited sample time). Thus, to
avoid simulation errors with referenced models that inherit their sample time,
you need to take care not to include S-functions in the referenced models that
fail to declare whether their output depends on their inherited sample time.
Simulink by default warns you if your model contains such blocks when you
update or simulate the model (see “Unspecified inheritability of sample time”
on page 10-50).

Referenced Model I/0

Simulink imposes the following restrictions on connecting signals to the inputs
and outputs of Model blocks.

Bus 1/O Limitations

A parent model can reference a model with bus input or output ports only if
each bus port meets the following conditions:

¢ The port is defined by a bus object, i.e., an instance of Simulink.Bus class
specified as the value of the port block’s Bus object parameter.

¢ The bus object is defined in a workspace that is visible from both the parent
and the referenced model, e.g., the MATLAB workspace for a model
referenced by a root model.

Similarly, the bus connected to a bus input port of a referenced model must be
defined by the same bus object that defines the bus input, i.e., the bus must be
created by a Bus Creator block whose Bus object parameter is set to the bus

4-63

4 Creating a Model

object as is the Inport of the referenced model. This explains why the bus object
must be visible to both the parent and the referenced model.

Index 1/O Limitations

In some circumstances, Simulink does not propagate 0- or 1-based indexing
information to the root-level ports connected to blocks in the referenced model
that accept indices, e.g., the Assignment block, or produce indices, e.g., the For
Iterator block. In particular, if a root-level input port is connected to index
inputs in the referenced model whose 0- or 1-based indexing properties differ,
Simulink does not set the 0- or 1-based indexing property of the input port.
Similarly, if a root-level output port of the referenced model is connected to
index outputs in the model that have different 0- or 1-based indexing settings,
Simulink does not set the 0- or 1-based indexing property of the root-level
output port. This can cause Simulink to miss incompatible index connections
when the model is referenced by another model.

Matching 1/0 Rates

In a referenced model, the first nonvirtual block connected downstream from a
root-level Inport of the referenced model and the first nonvirtual block
connected upstream from a root-level Outport must have the sample time as
the Inport or Outport block. If the rates do not match when you update or start
a simulation of the referencing model, Simulink halts and displays an error.
You can use Rate Transition blocks to match the root-level input and output
sample times as illustrated in the following diagram.

LOH T’z
— —

CoO—» - | » B (D
Ini M [T M [it
Rate Transition aain Rate Transition
ate = 0.1 ate = 0.2 ate = 0.1

Model Interfaces

A referenced model’s interface consists of its input and output ports and its
parameter arguments. Model block instances depict the interfaces of the
models they reference.

4-64

Referencing Models

Incremental Loading

Simulink takes advantage of this fact to defer loading of referenced models
until you update or simulate the model that references them. This feature,
called incremental loading, allows you to begin editing a model before it is
completely loaded, a useful capability when you need to make changes to large,
complex models.

Note To take advantage of incremental loading, models referenced by Model
blocks must have been opened and saved at least once in Release 14 (or a later
version) of Simulink.

Refreshing Model Blocks

Refreshing Model blocks refers to the process of updating them to reflect
graphical changes in the interfaces of the models they reference. To refresh all
of a model’s Model blocks, select Refresh Model Blocks from the model’s Edit
menu. To update a specific Model block, select Refresh from the block’s context
(pop-up) menu.

You should refresh a Model block instance if the model that it references has
changed since the block was created or since it was last refreshed and the
changes affect the block’s graphical appearance, for example, the referenced
model gained or lost a port. Simulink provides diagnostics that enable you to
detect changes in the interfaces of referenced models that could require
refreshing the Model blocks that reference them. The diagnostics include

® Model block version mismatch (see “Model block version mismatch” on
page 10-60)

¢ I/O port and parameter mismatch (see “Port and parameter mismatch” on
page 10-61)

Displaying Referenced Model Version Numbers

To display the version numbers of the models referenced by a model (see
“Managing Model Versions” on page 4-103), select Model block version from the

4-65

4 Creating a Model

Block displays submenu of the parent model’s Format menu. Simulink displays
the version numbers in the icons of the corresponding Model block instances.

counter
Count
Rev=1.10

Model
-
[

Scope

counter
Count

Rev=1.10

Modell

The version number displayed on a Model block’s icon refers to the version of
the model used to create the block or refresh the block when it was last
refreshed.

Building Simulation Targets

A simulation target is an S-function that computes the outputs of a referenced
model during simulation of the model’s parent. You can command Simulink to
generate simulation targets for model references at any time by updating the
model’s diagram or by executing the slbuild command at the MATLAB
command line or you can let Simulink determine whether and when to build
the simulation targets. If the simulation target for a referenced model does not
exist at the start of a simulation, Simulink generates the target. Subsequently,
if the files or workspace variables used to build the target change, it may be
necessary to rebuild the target to reflect the changes, depending on whether
the changes affect target outputs. You can let Simulink determine whether to
rebuild existing targets or specify that Simulink always or never rebuild
targets at the beginning of a simulation (see “Rebuild options for all referenced
models” on page 10-67).

While generating a target, Simulink displays status messages at the MATLAB
command line to enable you to monitor the target generation process, which
entails generating and compiling code and linking the compiled target code
with compiled code from standard code libraries to create an executable file.

Simulink creates simulation targets in the current working directory. It stores
intermediate files used to generate the simulation targets in separate
subdirectories of a subdirectory of the working directory named slprj. If the
slprj directory does not exist, Simulink creates it. The Simulink Accelerator

4-66

Referencing Models

and Real-Time Workshop also use the slprj subdirectory of the current
working directory to store intermediate files used to build acceleration targets
and stand-alone targets, respectively.

Project Directories

The policy of having all Simulink-related products store generated files in the
same subdirectory of the current work directory makes it easy for you to keep
all the generated files for a given project together and separate from generated
files belonging to other projects. All that is required is that you create a
separate directory for each project and make the directory for a given project
the current working directory when you are working on the project.

Converting Subsystems to Model References

Converting an existing model to use model referencing can be a
time-consuming and error-prone task if done by hand. Execute

mdlref_conversion

at the MATLAB command line for a demonstration of a way to automate this
task.

4-67

4 Creating a Model

Model Discretizer

4-68

The Model Discretizer selectively replaces continuous Simulink blocks with
discrete equivalents. Discretization is a critical step in digital controller design
and for hardware in-the-loop simulations. You can use this tool to prepare
continuous models for use with the Real-Time Workshop Embedded Coder,
which supports only discrete blocks.

The Model Discretizer enables you to

¢ Identify a model’s continuous blocks.
¢ Change a block’s parameters from continuous to discrete.

¢ Apply discretization settings to all continuous blocks in the model or to
selected blocks.

¢ Create configurable subsystems that contain multiple discretization
candidates along with the original continuous block(s).

¢ Switch among the different discretization candidates and evaluate the
resulting model simulations.

Requirements

To use the Model Discretizer, you must have the Control System Toolbox,
Version 5.2, installed.

Model Discretizer

Discretizing a Model from the Model Discretizer GUI
To discretize a model, follow these steps:

e “Start the Model Discretizer” on page 4-70

“Specify the Transform Method” on page 4-70
“Specify the Sample Time” on page 4-71

“Specify the Discretization Method” on page 4-71
“Discretize the Blocks” on page 4-75

The 14 model, shown below, demonstrates the steps in discretizing a model.

=]
File Edit WYiew Simulation Format Tools Help
~ . - : -
DSE&|$ER| < » =i e RE T ®
! -
Stick Input _’2"0‘9’0”9 =1
. Pilot G fome
Mz pilat Scope
u cakulation
Stick Input
1 "
—{alpta (md) Bevator Cormand (deg) Hie] (] Blevator Deflection d (deg) Mz Pilat ig)
Ta.s+1
g (rdiec) Vertical Vieaoity w (ftises) |4
- ™ Actuztor
ontmolier Wodel
>—p Viertical (GUst wELSt (fiiser)
Angle of
Attack
Fitch Fate q {mdises) -1
wg R | gl Fiotary Gust qEust (mdises P 1ilo —>®
og st alpha (=d)
A=t
Crnyden Wind Crnarics
Giust hodels hiq fodel
F-14 Flight Contmol
(Double click on the *?* for mor info) -
) Double click
hem for
To start and stop the simulation, use the "Stan® and Simulink Help
Stop selkections in the "Simulation® pull-down menu.
Ready [1o02 |odets v

4-69

4 Creating a Model

4-70

Start the Model Discretizer

To open the tool, select Model Discretizer from the Tools menu in a Simulink
model. This displays the Simulink Model Discretizer window.

stimulink Model 10l =|
File ‘“iew Discretize Help
o |] 4 4| S
D|‘?§:J"?§:TKJ|ZJ ﬂ|@
Caontains continuous hlock: pDiscretization setting
L Current selection: 14
& Actuator Model
m Aircraft Dynamics Wd | Transform method: |zer0-0rder hald LI
] Controller O I1U
2] Dryden Wind Gust w| | S3MHEIME: :
#-2+| Nz pilat caleulatian Jro |Hz =l
b 0 Filat
Replace current selection with:
|Discrete blocks (Enter parameters in s-domain) LI
|Newdiscrete subsystem LI b4
Store Settings | %ﬂ
rDiscretization statu
Continuous blocks in model: 12
Total blocks transformed: 1]
Continuous blocks in current selection: 12
Blocks transformed in current selection: 0
4 | >l
[Simulink Model Discretizer

Alternatively, you can open the Model Discretizer from the MATLAB command
window using the slmdldiscui function.

The following command opens the Simulink Model Discretizer window with
the f14 model.

slmdldiscui('f14")

To open a new Simulink model or library from the Model Discretizer, select
Load model from the File menu.

Specify the Transform Method

The transform method specifies the type of algorithms used in the
discretization. For more information on the different transform methods, see

Model Discretizer

Continuous/Discrete Conversions of LTI Models in the Control Systems
Toolbox documentation.

The Transform method drop-down list contains the following options:

® zero-order hold
Zero-order hold on the inputs.
® first-order hold

Linear interpolation of inputs.
® tustin

Bilinear (Tustin) approximation.
® tustin with prewarping

Tustin approximation with frequency prewarping.
® matched pole-zero

Matched pole-zero method (for SISO systems only).

Specify the Sample Time

Enter the sample time in the Sample time field.

You can specify an offset time by entering a two-element vector for discrete
blocks or configurable subsystems. The first element is the sample time and the
second element is the offset time. For example, an entry of [1.0 0.1] would

specify a 1.0 second sample time with a 0.1 second offset. If no offset is
specified, the default is zero.

You can enter workspace variables when discretizing blocks in the s-domain.
See “Discrete blocks (Enter parameters in s-domain)” on page 4-72.

Specify the Discretization Method

Specify the discretization method in the Replace current selection with field.
The options are

® Discrete blocks (Enter parameters in s-domain)

Creates a discrete block whose parameters are retained from the
corresponding continuous block.

® Discrete blocks (Enter parameters in z-domain)

Creates a discrete block whose parameters are “hard-coded” values placed
directly into the block’s dialog.

4-71

4 Creating a Model

® Configurable subsystem (Enter parameters in s-domain)
Create multiple discretization candidates using s-domain values for the
current selection. A configurable subsystem can consist of one or more
blocks.

® Configurable subsystem (Enter parameters in z-domain)

Create multiple discretization candidates in z-domain for the current
selection. A configurable subsystem can consist of one or more blocks.

Discrete blocks (Enter parameters in s-domain). Creates a discrete block whose
parameters are retained from the corresponding continuous block. The sample
time and the discretization parameters are also on the block’s parameter
dialog.

The block is implemented as a masked discrete block that uses c2d to
transform the continuous parameters to discrete parameters in the mask
initialization code.

These blocks have the unique capability of reverting to continuous behavior if
the sample time is changed to zero. Entering the sample time as a workspace
variable (‘Ts’, for example) allows for easy changeover from continuous to
discrete and back again. See “Specify the Sample Time” on page 4-71.

Note Parameters are not tunable when Inline parameters is selected in the
model’s Configuration Parameters dialog box.

4-72

Model Discretizer

The figure below shows a continuous Transfer Function block next to a
Transfer Function block that has been discretized in the s-domain. The Block
Parameters dialog box for each block is shown below the block.

Block Parameters: Tr. E|

~ Transfer Fon

Matrix expresszion for numerator, vector expression for denominator.
Output width equals the number of rows in the numerator. Coefficients are
for descending powers of s

Block Parameters: Di

i DigcretizedTransferlFcn [mask] (link]

Continuous mask uges c2d to iansform parameters onto the Discrete
Transfer function block inside

Nurmerater.
(@]
Denaminator:
[}

Ahsolute tolerance:

Iauln

(1] Cancel Help Apply

MHumerator [enter in s-domain:|

[

Denominator [enter in g-domain:]

K1}

Sample time:

1

Method Itustm

=

oK I Cancel I Help | Apply

Discrete blocks (Enter parameters in z-domain). Creates a discrete block whose
parameters are “hard-coded” values placed directly into the block’s dialog. The
model discretizer uses the c2d function to obtain the discretized parameters, if

needed.

For more help on the c2d function, type the following in the Command Window:

help cad

4-73

4 Creating a Model

The figure below shows a continuous Transfer Function block next to a
Transfer Function block that has been discretized in the z-domain. The Block
Parameters dialog box for each block is shown below the block.

+0.5

Block Parameters: T = Block Paramete

i~ Transfer Fen

i~ Discrete Transfer Fon

I atrizx expression for numerator, vector expression for denominatar.
Output width equals the number of raws in the numerator, Coefficients are
for descending powers of 5.

Matrix expression far numerator, vector expression for denominator. Output
width equals the number of raws in the numerator, Coefficients are for
descending powers of z.

P P
F F

Humeratar: Numerator:

D] D]

Denorminator:

Denorninator:
K] [0l
Absalute tolerance:

Sample time [-1 for inherited):
Iauta |1

oK Cancel Help Apply oK Cancel Help Apply

Note If you want to recover exactly the original continuous parameter values
after the Model Discretization session, you should enter parameters in the
s-domain.

Configurable subsystem (Enter parameters in s-domain). Create multiple
discretization candidates using s-domain values for the current selection. A
configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active when
this option is selected. This option allows you to either create a new
configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or
libraries for the configurable subsystem option.

Configurable subsystem (Enter parameters in z-domain). Create multiple
discretization candidates in z-domain for the current selection. A configurable
subsystem can consist of one or more blocks.

4-74

Model Discretizer

The Location for block in configurable subsystem field becomes active when
this option is selected. This option allows you to either create a new
configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or
libraries for the configurable subsystem option.

Configurable subsystems are stored in a library containing the discretization
candidates and the original continuous block. The library will be named <model
name> disc_lib and it will be stored in the current directory. For example a
library containing a configurable subsystem created from the 14 model will be
named f14_disc lib.

If multiple libraries are created from the same model, then the filenames will
increment accordingly. For example, the second configurable subsystem
library created from the f14 model will be named f14_disc_1ib2.

You can open a configurable subsystem library by right-clicking on the
subsystem in the Simulink model and selecting Link options -> Go to library
block from the pop-up menu.

Discretize the Blocks

To discretize blocks that are linked to a library, you must either discretize the
blocks in the library itself or disable the library links in the model window.

You can open the library from the Model Discretizer by selecting Load model
from the File menu.

You can disable the library links by right-clicking on the block and selecting
Link options -> Disable link from the pop-up menu.

There are two methods for discretizing blocks.
Select Blocks and Discretize.
1 Select a block or blocks in the Model Discretizer tree view pane.

To choose multiple blocks, press and hold the Ctrl button on the keyboard
while selecting the blocks.

4-75

4 Creating a Model

Note You must select blocks from the Model Discretizer tree view. Clicking
on blocks in the Simulink editor does not select them for discretization.

2 Select Discretize current block from the Discretize menu if a single block
is selected or select Discretize selected blocks from the Discretize menu if
multiple blocks are selected.

You can also discretize the current block by clicking the Discretize button,
shown below.

Bl

Store the Discretization Settings and Apply Them to Selected Blocks in the Model.
1 Enter the discretization settings for the current block.
2 Click Store Settings.

This adds the current block with its discretization settings to the group of
preset blocks.

3 Repeat steps 1 and 2, as necessary.

4 Select Discretize preset blocks from the Discretize menu.

Deleting a Discretization Candidate from a Configurable Subsystem

You can delete a discretization candidate from a configurable subsystem by
selecting it in the Location for block in configurable subsystem field and
clicking the Delete button, shown below.

]

4-76

Model Discretizer

Undoing a Discretization
To undo a discretization, click the Undo discretization button, shown below.

=]
Alternatively, you can select Undo discretization from the Discretize menu.

This operation undoes discretizations in the current selection and its children.
For example, performing the undo operation on a subsystem will remove
discretization from all blocks in all levels of the subsystem’s hierarchy.

4-77

4 Creating a Model

Viewing the Discretized Model

The Model Discretizer displays the model in a hierarchical tree view.

Viewing Discretized Blocks

The block’s icon in the tree view becomes highlighted with a “z” when the block
has been discretized. The figure below shows that the Aircraft Dynamics Model
subsystem has been discretized into a configurable subsystem with three
discretization candidates. The other blocks in this f14 model have not been
discretized.

imulink Model Discretizer 10l =|

File ‘“iew Discretize Help

B HE O 0| ?
Caontains continuous hlock: pDiscretization setting

ﬁ 4 Current selection: Aircraft Dynamics Model
& Actuator Model

E Aircraft Dynamics Ma | Transform method: |zer0-0rder hald LI
& Transfer Fen.1 o
Transfer Fong || SAMple time: o0
=2+ Contraller |1.D |Hz =

& Alpha-sensar Loy
@ Pitch Rate Lead F| | Replace current selection with:
Fropartional plus
Stick Prefilter

-2+ Dryden wind Gust w| | Location far black in configurable subsysterm:
G-gust madel
&g W-gust model -
B2 Nz pilot calculation Mew discrete subsystem

Configurable subsystemn (Parameters in s-domain)LI

Aircraft Dynamics Model discrete version 1 LI X

Drerivative Aircraft Dynamics Model discrete version 1
@ Derivative1 Saircraft Dynamics Model discrete version 2
""" 0 Pilot [aircrat Dynamics Model discrete version 3
Confinuous Blocks in moder: T2
Total blocks transformed: 2

Continuous blocks in current selection: 2
Blocks transformed in current selection: 2

JE1 I i

[Simulink Model Discretizer

4-78

Model Discretizer

The following figure shows the Aircraft Dynamics Model subsystem of the f14
demo model after discretization into a configurable subsystem containing the
original continuous model and three discretization candidates.

File Edit Wiew Simulation Format Toaols Help

S [=]

O FE&S| $BR|D 2 » llNDlmal eS| RE G R

Stick Input

]

Stiok Input g
slpha () Blevator Gommand (deg)
q (meses)

1

Tas+1

Contmlizr

wa

cal2
Dryden Wind
Gust Modets

Astuator
hiadel

F-14 Fight Contml

iDoubke click on the *2* for moe info)

Tor start and stop the simulation, use the "Start’ and
"Stop' szlections in the "Simulation” pulldown menu

Vertical Velosity w {ft/sec)

Open block.
Open block in new window

ut
Copy
Clzar

Mask parameters. ..
SubSystem parameters...
Block properties. ..

t

Pt g fore i)
a

Pilt G fome

Wz pilt Scape
cakulation
Nz Fiot ig)
Angle of
Anack

Aircraft Dynamics Model

Aircraft Dynamics Model discrete wersion 1
Aircraft Dynamics Model discrete version 2
v fircraft Dynamics Model discrete version 3

Real-Time Workshop 3
Fixed-Point settings. ..

Mechanical environment. ..

Mask subsystem

U PO R

|odeds

4-79

4 Creating a Model

The following figure shows the library containing the Aircraft Dynamics Model
configurable subsystem with the original continuous model and three
discretization candidates.

E!Lihrary: f14_disc_lib ;Iglll

File Edit WYiew Formatb Help

DSHS| 2R (2 BE

Templae
[Elavator Detection d [deg) [Elavator Detection d [deg) [Elavator Detection d [deg) [Elavator Detection d [deg)
Wartical Velosity w fte) Wartical Velosity w fte) Wartical Velosity w fte) Wartical Velosity w fte) Wartical Velosity w fte)
[V artical GUst wELsE e [V artical GUst wELsE e [V artical GUst wELsE e [V artical GUst wELsE e
Fitch Fists q (racdtoc) - Fibeh Fiata q rackesc] q q
[Feobary Gt qEUsE rad e Fuobary) Fuobary) [Feobary Gt qEUsE rad e
pr— Fircratt Fircratt Fircratt Fircratt
o rora Diyriaem ics Diyriaem ics Diyriaem ics Diyriaem ics
i Mol Mol Mol Mol
(Conigrie 5) disoree version 1 dsoree version 2 dsoree version 3
Aincraft Oy ramics Model dacrebe version 3
Ready B0% Locked v

Refreshing Model Discretizer View of the Model

To refresh the Model Discretizer’s tree view of the model when the model has
been changed, click the Refresh button, shown below.

2|

Alternatively, you can select Refresh from the View menu.

4-80

Model Discretizer

Discretizing Blocks from the Simulink Model

You can replace continuous blocks in a Simulink model with the equivalent
blocks discretized in the s-domain using the Discretizing library.

The procedure below shows how to replace a continuous Transfer Fen block in
the Aircraft Dynamics Model subsystem of the f14 model with a discretized
Transfer Fen block from the Discretizing Library. The block is discretized in
the s-domain with a zero-order hold transform method and a 2 second sample
time.

1 Open the f14 model.

2 Open the Aircraft Dynamics Model subsystem in the f14 model.

E!fl-{.-"nircraft Dynamics Model - |EI|1|
File Edit WYiew Simulation Format Tools Help
DSE&|$ER| < » =i e RE T ®
Elevator
Deflection
d (deg)
1 T
{1
Vertical Gust sIw Vertical Veleity
wiiust (frzac) Transter Fen 2 w iftis=c)
Ua
Tk ol
f
Fiotary Gust s Pitsh Rate
qGust (mdfsec) Transfer Fen.d q (mdfzac)
Ready [1o02 |odets v

4-81

4 Creating a Model

3 Open the Discretizing library window.

Enter discretizing at the MATLAB command prompt. The Library:
discretizing window opens. This library contains s-domain discretized

blocks.
SlLibrary: discretizing 10l =|
File Edit WYiew Formatb Help
oooo
il
Distretized Distretized _ Discretized Distretized
Rarnp Repeating Sequence Signal Genemtor Ghip Signal
- tustin tustin Tustin
tustin | # = AxtBu a1 2(=-1)
duidt = Gt Du - juknii
1P
Dissretzed Dizs retized Py m—
Derhiaithie = Etize Dise etized
State-Space
P Trnsfer Fen Fem-Pok
tustin
2
z F =s{(1,[1 100
Discretzed - -
Discretzed
Trnzport Delay 2 LTI System
‘ ‘
Diseetred Discretzed
Varable Trnsport Delay
Trnsporn Delay
Sirmulink Discretzer Libmny 1.0
Sopyrght () 19902002 The hathWors, Inc.

4 Add the Discretized Transfer Fen block to the f14/Aircraft Dynamics Model
window.

a Click the Discretized Transfer Fen block in Library: discretizing
window.

b Drag it into the f14/Aircraft Dynamics Model window.

4-82

Model Discretizer

E!fl-{.- ircraft Dynamics Model _|EI|1|
File Edit WYiew Simulation Format Tools Help
DEE&| % BR[| » = |Nom e RE T ®
Elevator
Deflection
d deq)
f
L ; {1
Vertical Gust sIw Vertical Veleity
wiiust (frzac) Transter Fen 2 w iftis=c)
Ua
LT
f
=-hig .
Rotany Gust Fitch Rate
qGust (mdfsec) Transfer Fen.d q (mdfzac)
tustin
=X
s+1
Discretzed
Trnsfer Fen
Ready [1o02 [[|odets v

5 Open the parameter dialog box for the Transfer Fen.1 block.

Double-click the Transfer Fen.1 block in the f14/Aircraft Dynamics Model
window. The Block Parameters: Transfer Fen.1 dialog box opens.

Block Parameters: Transfer Fcn.l |

r Transfer Fcn

b4 atri expression for numeratar, vector expression for denominatar.
Output width equals the number of rows in the numerator. Coefficients are
for dezcending powers of &

Murneratar:
]
D enominatar:
j[1.al

Absolute tolerance:

Iauto

QK I Cancel Help Apply

4-83

4 Creating a Model

6 Open the parameter dialog box for the Discretized Transfer Fcn block.

Double-click the Discretized Transfer Fen block in the f14/Aireraft
Dynamics Model window. The Block Parameters: Discretized Transfer
Fen dialog box opens.

Block Parameters: Discretized Transfer Fen |

r— DiscretizedT ransferFon [mask] [link]

Continuous mask uses c2d to ransform parameters onto the Discrete
Transfer function block inside.

—P |
F

Mumerator [enter in s-domain:]

]

Denominator [enter in s-domain:]
0]

Absolute tolerance:

Iauto

Sample time:
1

Method: Itustin j

QK I Cancel | Help | Apply |

Copy the parameter information from the Transfer Fen.1 block’s dialog box
to the Discretized Transfer Fen block’s dialog box.

Block Parameters: Discretized Transfer Fcn |

r— DiscretizedT ransferFon [mask] [link]

Continuous mask uses c2d to ransform parameters onto the Discrete
Transfer function block inside.

=) |
F

Mumerator [enter in s-domain:]
]
Denominator [enter in s-domain:]
j[1.al

Absolute tolerance:

Iauto

Sample time:
1

Method: Itustin j

QK I Cancel Help Apply |

4-84

Model Discretizer

7 Enter 2 in the Sample time field.
8 Select zoh from the Method drop-down list.

The parameter dialog box for the Discretized Transfer Fen. now looks like
this.

Block Parameters: Discretized Transfer Fen |

r— DiscretizedT ransferFon [mask] [link]

Continuous mask uses c2d to ransform parameters onto the Discrete
Transfer function block inside.

INumerator [enter in s-domain:]
]

Denominator [enter in s-domain:]
j[1.al

Absolute tolerance:

Iauto

Sample time:
2

Methoc: [T - |
QK I Cancel | Help | Apply |

4-85

4 Creating a Model

9 Click OK.

The f14/Aircraft Dynamics Model window now looks like this.

E!fl-{.-"nircraft Dynamics Model - |EI|1|
File Edit WYiew Simulation Format Tools Help
DEE&| % BR[| » = |Nom e RE T ®
Elevator
Deflection
d (deg)
f
= >D)
Vertical Gust sIw Vertical Veleity
wiiust (frzac) Transter Fen 2 w iftis=c)
Ua
Tk ol
f
Fiotary Gust s Pitsh Rate
qGust (mdfsec) Transfer Fen.d q (mdfzac)
zoh
1
s-hig
Discretzed
Trnsfer Fen
Ready [1o02 |odets v

4-86

Model Discretizer

10 Delete the original Transfer Fen.1 block.

a Click the Transfer Fen.1 block.

b Press the Delete key. The f14/Aircraft Dynamics Model window now
looks like this.

Z1f14/ Aircraft Dynamics Model 10l =|
File Edit WYiew Simulation Format Tools Help
DEE&| % BR[| » = |Nom e RE T ®
Elevator
Deflection
d ideq)
-
=-Zw - .
Werical Gust Werical Velbcity
waiust (ftisec) Transter Fon.2 w iftisec)
N |4
------------------ 3 >-—>®
Rotary Gust Pitch Rate
qGust (mdfsec) q (mdfzac)
zoh
1
=-hig
Discretzed
Trnsfer Fen
Ready [1o02 |odets v

4-87

4 Creating a Model

11 Add the Discretized Transfer Fen block to the model.

a Click the Discretized Transfer Fen block.

b Drag the Discretized Transfer Fcn block into position to complete the
model. The f14/Aircraft Dynamics Model window now looks like this.

E!fl-{.-"nircraft Dynamics Model - |EI|1|
File Edit WYiew Simulation Format Tools Help
DEE&| % BR[| » = |Nom e RE T ®
Elevator
Deflection
d deq)
f
> — ; {1
Vertical Gust sIw Vertical Veleity
wiiust (frzac) Transter Fen 2 w iftis=c)
Ua
LT
zoh
1
=-hig .
Rotany Gust Fitch Rate
qGust (mdfsec) Disc retized q (mdfzac)
Trnsfer Fen.l
Ready [1o02 |odets v

4-88

Model Discretizer

Discretizing a Model from the MATLAB Command

Window

Use the sldiscmdl function to discretize Simulink models from the MATLAB
Command Window. You can specify the transform method, the sample time,
and the discretization method with the s1ldiscmdl function.

For example, the following command discretizes the f14 model in the s-domain
with a 1 second sample time using a zero-order hold transform method.

sldiscmdl('f14',1.0,'zoh")

For more information on the sldiscmdl function, see the reference pages in
Simulink Model Construction Commands.

4-89

4 Creating a Model

4-90

Using Callback Routines

You can define MATLAB expressions that execute when the block diagram or
a block is acted upon in a particular way. These expressions, called callback
routines, are associated with block, port, or model parameters. For example,
the callback associated with a block’s OpenFcn parameter is executed when the
model user double-clicks on that block’s name or the path changes.

Tracing Callbacks

Callback tracing allows you to determine the callbacks Simulink invokes and
in what order Simulink invokes them when you open or simulate a model. To
enable callback tracing, select the Callback tracing option on the Simulink
Preferences dialog box (see “Setting Simulink Preferences” on page 1-18) or
execute set_param(0, 'CallbackTracing', 'on'). This option causes
Simulink to list callbacks in the MATLAB Command Window as they are
invoked.

Creating Model Callback Functions

You can create model callback functions interactively or programmatically.
Use the Callbacks pane of the model’s Model Properties dialog box (see
“Callbacks Pane” on page 4-106)to create model callbacks interactively. To
create a callback programmatically, use the set_param command to assign a
MATLAB expression that implements the function to the model parameter
corresponding to the callback (see “Model Callback Parameters” on page 4-91).

For example, this command evaluates the variable testvar when the user
double-clicks the Test block in mymodel.

set_param('mymodel/Test', 'OpenFcn', testvar)

You can examine the clutch system (clutch.mdl) for routines associated with
many model callbacks.

Using Callback Routines

Model Callback Parameters

The following table lists the model parameters used to specify model callback
routines and indicates when the corresponding callback routines are executed.

Parameter When Executed

CloseFcn Before the block diagram is closed.

PostLoadFcn After the model is loaded. Defining a callback
routine for this parameter might be useful for
generating an interface that requires that the
model has already been loaded.

InitFcn Called at start of model simulation.

PostSaveFcn After the model is saved.

PreLoadFcn Before the model is loaded. Defining a callback
routine for this parameter might be useful for
loading variables used by the model.

PreSaveFcn Before the model is saved.

StartFcn Before the simulation starts.

StopFcn After the simulation stops. Output is written to

workspace variables and files before the StopFcn is
executed.

Note Beware of adverse interactions between callback functions of models
referenced by other models. For example, suppose that model A references
model B and that model A’s OpenFecn creates variables in the MATLAB
workspace and model B’s CloseFcn clears the MATLAB workspace. Now
suppose that simulating model A requires rebuilding model B. Rebuilding B
entails opening and closing model B and hence invoking model B’s CloseFcn,
which clears the MATLAB workspace, including the variables created by A’s

OpenFen.

4-91

4 Creating a Model

4-92

Creating Block Callback Functions

You can create model callback functions interactively or programmatically.
Use the Callbacks pane of the model’s Block Properties dialog box (see
“Callbacks Pane” on page 5-11) to create model callbacks interactively. To
create a callback programmatically, use the set_param command to assign a
MATLAB expression that implements the function to the block parameter
corresponding to the callback (see “Block Callback Parameters” on page 4-92).

Note A callback for a masked subsystem cannot directly reference the
parameters of the masked subsystem (see “About Masks” on page 12-2). The
reason? Simulink evaluates block callbacks in a model’s base workspace
whereas the mask parameters reside in the masked subsystem’s private
workspace. A block callback, however, can use get_param to obtain the value
of a mask parameter, e.g., get_param(gcb, 'gain'), where gain is the name
of a mask parameter of the current block.

Block Callback Parameters

This table lists the parameters for which you can define block callback
routines, and indicates when those callback routines are executed. Routines
that are executed before or after actions take place occur immediately before or
after the action.

Parameter When Executed

ClipboardFcn When the block is copied or cut to the system
clipboard.

CloseFcn When the block is closed using the close system
command.

CopyFcn After a block is copied. The callback is recursive for

Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the CopyFcn
parameter is defined, the routine is also executed).
The routine is also executed if an add_block
command is used to copy the block.

Using Callback Routines

Parameter

When Executed

DeleteChildFcn

DeleteFcn

DestroyFcn

InitFcn

LoadFcn

ModelCloseFcn

MoveFcn

NameChangeFcn

OpenFcn

ParentCloseFcn

After a block is deleted from a subsystem.

Before a block is deleted, e.g., when the user deletes
the block or closes the model containing the block.
This callback is recursive for Subsystem blocks.

When the block has been destroyed.

Before the block diagram is compiled and before
block parameters are evaluated.

After the block diagram is loaded. This callback is
recursive for Subsystem blocks.

Before the block diagram is closed. This callback is
recursive for Subsystem blocks.

When the block is moved or resized.

After a block’s name and/or path changes. When a
Subsystem block’s path is changed, it recursively
calls this function for all blocks it contains after
calling its own NameChangeFcn routine.

When the block is opened. This parameter is
generally used with Subsystem blocks. The routine
is executed when you double-click the block or
when an open_system command is called with the
block as an argument. The OpenFcn parameter
overrides the normal behavior associated with
opening a block, which is to display the block’s
dialog box or to open the subsystem.

Before closing a subsystem containing the block or
when the block is made part of a new subsystem
using the new_system command (see new_systemin
the “Model Creation Commands” section of the
Simulink online Help).

4-93

4 Creating a Model

Parameter When Executed

PreSaveFcn Before the block diagram is saved. This callback is
recursive for Subsystem blocks.

PostSaveFcn After the block diagram is saved. This callback is
recursive for Subsystem blocks.

StartFcn After the block diagram is compiled and before the
simulation starts. In the case of an S-Function
block, StartFcn executes immediately before the
first execution of the block’s mnd1ProcessParameters
function. See “S-Function Callback Methods” in
Writing S-Functions for more information.

StopFcn At any termination of the simulation. In the case of
an S-Function block, StopFcn executes after the
block’s md1Terminate function executes. See
“S-Function Callback Methods” in Writing
S-Functions for more information.

UndoDeleteFcn When a block delete is undone.

4-94

Using Callback Routines

Port Callback Parameters

Block input and output ports have a single callback parameter,
ConnectionCallback. This parameter allows you to set callbacks on ports that
are triggered every time the connectivity of those ports changes. Examples of
connectivity changes include deletion of blocks connected to the port and
deletion, disconnection, or connection of branches or lines to the port.

Use get_param to get the port handle of a port and set_param to set the
callback on the port. For example, suppose the currently selected block has a
single input port. The following code fragment sets foo as the connection
callback on the input port.

phs = get param(gcb, 'PortHandles');
set_param(phs.Inport, 'ConnectionCallback', 'foo');

The first argument of the callback function must be a port handle. The callback
function can have other arguments (and a return value) as well. For example,
the following is a valid callback function signature.

function foo(port, otherArgil, otherArg2)

4-95

4 Creating a Model

Working with Model Workspaces

4-96

Simulink provides each model with its own workspace for storing variable
values. The model workspace is similar to the base MATLAB workspace except
that

® Variables in a model’s workspace are visible only in the scope of the model.
If both the MATLAB workspace and a model workspace define a variable of
the same name (and the variable does not appear in any intervening masked
subsystem or referenced model workspaces), Simulink uses the value of the
variable in the model workspace. A model’s workspace effectively provides it
with its own name space, allowing you to create variables for the model
without risk of conflict with other models.

¢ When the model is loaded, the workspace is initialized from a data
repository.
The data repository can be a MAT-file or data or M-code stored in the model
file itself (see “Data source” on page 4-99 for more information).

® You can interactively reload and save the current data repository.

¢ The only kind of Simulink data object that a model workspace can contain is
Simulink.Parameter.

¢ In general, parameter variables in a model workspace are not tunable.

However, you can declare variables in a model’s workspace as model
arguments. You can tune the arguments of a model referenced by another
model in the base workspace of the parent model.

Note When resolving references to variables used in a referenced model, i.e.,
a model referenced by a Model block (see “Referencing Models” on page 4-53),
Simulink resolves the referenced model’s variables as if the parent model does
not exist. For example, suppose a referenced model references a variable that
is defined in both the parent model’s workspace and in the MATLAB
workspace but not in the referenced model’s workspace. In this case, Simulink
uses the variable defined in the MATLAB workspace.

Working with Model Workspaces

Changing a Model Workspace

The procedure for modifying a workspace depends on the workspace’s data
source. See the following sections for more information.

¢ “Changing a Workspace Whose Source is the Model File” on page 4-97
¢ “Changinging a Workspace Whose Source Is a MAT-File” on page 4-98
¢ “Changing a Workspace Whose Source Is M-Code” on page 4-98

Changing a Workspace Whose Source is the Model File
If a model workspace’s data source is data stored in the model, you can use the

Model Explorer (see “The Model Explorer” on page 9-2) or MATLAB commands
to change the model’s workspace.

For example, to create a variable in a model workspace, using the Model
Explorer, first select the workspace in the Model Explorer’s Model Hierarchy
pane. Then select MATLAB Variable from the Model Explorer’s Add menu or
toolbar. You can similarly use the Add menu or the Model Explorer toolbar to
add a Simulink.Parameter object to a model workspace.

To change the value of a model workspace variable, select the workspace, then
select the variable in the Model Explorer’s Contents pane and edit the value
displayed in the Contents pane or in the Model Explorer’s object Dialog pane.
To delete a model workspace variable, select the variable in the Contents pane
and select Delete from the Model Explorer’s Edit menu or toolbar. To save the
changes, save the model.

To use MATLAB commands to change a model workspace, first get the
workspace for the currently selected model:

hws = get_param(bdroot, 'modelworkspace');

This command returns a handle to a Simulink.ModelWorkspace object whose
properties specify the source of the data used to initialize the model workspace.
Edit the properties to change the data source. Use the following methods to list,
set, and clear variables, evaluate expressions in, and save and reload
workspaces:

® whos (hws)

® assignin(hws, 'varname', value)
® evalin(hws, 'expression')

® clear (hws)

4-97

4 Creating a Model

4-98

® clear(hws, 'varti', 'var2', ...)
® save (hws)
® reload(hws)

Note You can use dot notation to invoke these methods on a workspace
object,i.e., hws.assignin('varname', value) is equivalent to assignin(hws,
‘varname', value).

The following example uses MATLAB commands to create, save, and load
variables in the currently selected model’s workspace.

a = get_param(bdroot, 'modelworkspace');
a.DataSource = 'MAT-File';
a.RelativePath = 'on';

a.FileName = 'params’;

a.assignin(a, 'pitch’, -10);
a.assignin('roll', 30);
a.assignin('yaw’, -2);

a.save;

a.reload;

Changinging a Workspace Whose Source Is a MAT-File

You cannot use the Model Explorer or model workspace commands to modify a
model workspace whose source is a MAT-file. To change a model workspace
whose source is a MAT-file, you must recreate the MAT-file and reload it. An
easy way to do this is to use the model workspace’s dialog box (see “Model
Workspace Dialog Box” on page 4-99) to change the workspace’s source
temporarily to the model, make your changes, using the Model Explorer’s
object creation and editing controls, export the changes to the MAT-file, and
then change the workspace’s source back to the MAT-file.

Changing a Workspace Whose Source Is M-Code

Simulink does not allow you to use the Model Explorer’s object creation and
editing controls or model workspace commands to change a model workspace
whose source is M-code. To change such a workspace, you must use the
workspace’s dialog box to edit the M-code and reinitialize the workspace (see
“M-Code Source Controls” on page 4-101).

Working with Model Workspaces

Model Workspace Dialog Box

The Model Workspace Dialog Box enables you to specify a model workspace’s

source and model reference arguments. To display the dialog box, select the
model workspace in the Model Explorer’s Model Hierarchy pane.

& Maodel Explorer

_lolx
File Edit Yiew Tools Add Help

D@ tmex BHc<%Nf0 On/ 48[t wra2d
“Sealch: Ib_l,l Elock Type LI Type IAssignment LI Search |

tdodel Higrarchy | Contents of. Model Workspace Model Workspace

: L Workspace data

EI"E.ISImUImk Foot | Name I Valuel DalaTypeI oespane
b 1 Bass Wirkspacs Data source: | MDLFile fread/witz] =]
E--Emodws

Madel Woarkspace

Import From MAT-FiIel Erport To M&T-File| Clear Wurkspacal

.Configuratwon [Active] Model b [F f thi del]:
) @ oo odel arguments [for ieferencing this model}
? Advice for untitled I

LContents | Search Results Fevert Help Spply

RN

The dialog box contains the following controls.

Data source
Specifies the source of this workspace’s data. The options are
® Mdl-File

Specifies that the data source is the model itself. Selecting this option causes

additional controls to appear (see “MDL-File Source Controls” on
page 4-100).

® MAT-File

Specifies that the data source is a MAT file. Selecting this option causes

additional controls to appear (see “MAT-File Source Controls” on
page 4-100).

4-99

4 Creating a Model

® M-code

Specifies that the data source is M code stored in the model file. Selecting
this option causes additional controls to appear (see “M-Code Source
Controls” on page 4-101).

MDL-File Source Controls

Selecting Md1-File as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.

Model Workspace
‘Workspace data

[rata source: I MODL-File [readwrite] LI
Import From MAT-FiIel Export Ta MAT-FiIel Clear Workspacel

Import From MAT-File. This button lets youimport data from a MAT-file. Selecting
the button causes Simulink to display a file selection dialog box. Use the dialog
box to select the MAT file that contains the data you want to import.

Export To MAT-File. This button lets you save the selected workspace as a
MAT-file. Selecting the button causes Simulink to display a file selection dialog
box. Use the dialog box to select the MAT file to contain the saved data.

Clear Workspace. This button clears all data from the selected workspace.

MAT-File Source Controls

Selecting Md1-File as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.

Model Workspace
‘Workspace data

(EERLIVER (4T -File [read-only]

File name: |modws. mat

Fie-initialize Workspacel Export Ta MAT-File

4-100

Working with Model Workspaces

File name. File name or path name of the MAT file that is the data source for
the selected workspace. If a file name, the name must reside on the MATLAB
path.

Re-initialize Workspace. Clears the workspace and reloads it from the specified
MAT file.

Export To MAT-File. This button lets you save the selected workspace as a
MAT-file. Selecting the button causes Simulink to display a file selection dialog
box. Use the dialog box to select the MAT file to contain the saved data.

M-Code Source Controls

Selecting M-Code as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.

Model Workspace
—workspace data

[Diata source: I M-Code [read-anly] LI
M-Code:

Fie-initialize Workspacel Export T MAT-FiIel

M-Code. Specifies M code that initializes the selected workspace in this field. To
change the initialization code, edit this field and select the Accept button on
the dialog box to confirm the changes and execute the modified code.

Re-initialize Workspace. Clears the workspace and executes the contents of the
M-Code field.

Export To MAT-File. This button lets you save the selected workspace as a

MAT-file. Selecting the button causes Simulink to display a file selection dialog
box. Use the dialog box to select the MAT file to contain the saved data.

4-101

4 Creating a Model

Model Arguments

This field allows you to specify arguments that can be passed to instances of
this model referenced by another model. See “Using Model Arguments” on
page 4-57 for more information.

4-102

Managing Model Versions

Managing Model Versions

Simulink has features that help you to manage multiple versions of a model.

® As you edit a model, Simulink generates version control information about
the model, including a version number, who created and last updated the
model, and an optional change history. Simulink saves the automatically
generated version control information with the model. See “Version Control
Properties” on page 4-111 for more information.

¢ The Simulink Model Parameters dialog box lets you edit some of the version
control information stored in the model and select various version control
options (see “Model Properties Dialog Box” on page 4-105).

¢ The Simulink Model Info block lets you display version control information,
including information maintained by an external version control system, as
an annotation block in a model diagram.

¢ Simulink version control parameters let you access version control
information from the MATLAB command line or an M-file.

¢ The Source Control submenu of the Simulink File menu allows you to check
models into and out of your source control system. See “Interfacing with
Source Control Systems” in the MATLAB documentation for more
information.

Specifying the Current User

When you create or update a model, Simulink logs your name in the model for
version control purposes. Simulink assumes that your name is specified by at
least one of the following environment variables: USER, USERNAME, LOGIN, or
LOGNAME. If your system does not define any of these variables, Simulink does
not update the user name in the model.

UNIX systems define the USER environment variable and set its value to the
name you use to log on to your system. Thus, if you are using a UNIX system,
you do not have to do anything to enable Simulink to identify you as the current
user. Windows systems, on the other hand, might define some or none of the
“user name” environment variables that Simulink expects, depending on the
version of Windows installed on your system and whether it is connected to a
network. Use the MATLAB command getenv to determine which of the
environment variables is defined. For example, enter

4-103

4 Creating a Model

getenv('user')

at the MATLAB command line to determine whether the USER environment
variable exists on your Windows system. If not, you must set it yourself. On
Windows 98, set the value by entering the following line

set user=yourname
in your system’s autoexec.bat file, where yourname is the name by which you

want to be identified in a model file. Save the file autoexec.bat and reboot
your computer for the changes to take effect.

Note The autoexec.bat file typically is found in the c¢:\ directory on your
system’s hard disk.

On Windows NT and 2000, use the Environment variables pane of the System
Properties dialog box to set the USER environment variable (if it is not already

defined).
System Properties EHE
Startup/Shutdown I Hardware Frafiles | Uzer Profiles |
Gereral I Performance Environment

Sustem Yariables:

‘Wariable | Walue |;|
as Windows MT

Osz2LibPath CAWIMM T hapstem32hoz2hdll; J
Path cohusribingd: oshbinntd:hemacs-20.3. 14bin;..
PATHEXT [COM:ExE.BAT.PL

PROCESSOR_AR... =86 LI
User Variables for paulk:

‘Wariable | Walue |;|
MATLAR d:rid

MSDevDir D:4DevStudiohShared DE

path cohwuzribingd: reshbinnt;d: hemacs-20.3.14bin;... J
TEMP CATEMP

TMF CATEMP jhd|
ariable: IUSEH
Yalue: Iyoumame

Set Delete |

QK | Cancel | Apply |

4-104

Managing Model Versions

To display the System Properties dialog box, select Start -> Settings ->

Control Panel to open the Control Panel. Double-click the System icon. To set
the USER variable, enter USER in the Variable field and enter your login name
in the Value field. Click Set to save the new environment variable. Then click
OK to close the dialog box.

Model Properties Dialog Box

The Model Properties dialog box allows you to set various version control
parameters and model callback functions. To display the dialog box, choose

Model Properties from the Simulink File menu.

E1Model Properties

IEaIIbacks I Histary I Description I

2|

<

4B at0PhANnightlytmatlabiytoolboshsimulink\simdemoshsimaenera

Wwied Apr 21 03:46:41 2004
FriAug 18 16:03:13 2000
no

12

Model Information for: vdp
Source file:

Last Saved:
Created On:

I Modified:
Model Version:

i

Ok I Lancel

Help

Apply

The dialog box includes the following panes.

Main Pane

The Main pane summarizes information about the current version of this

model.

4-105

4 Creating a Model

Callbacks Pane
The Callbacks pane lets you specify functions to be invoked by Simulink at
specific points in the simulation of the model.

21|

E1Model Properties

[ET |

Model pre-load function:

History | Description

Model initialization function:

Simulation start functior:

Simulation stop function:

Model pre-zave function:

Model close function:

Ok I Lancel | Help | Apply |

Enter the names of any callback functions you want to be invoked in the
appropriate fields. See “Creating Model Callback Functions” on page 4-90 for
information on the callback functions listed on this pane.

4-106

Managing Model Versions

History Pane

The History pane allows you to enable, view, and edit this model’s change
history.

E! Model Properties ﬂﬂ
Main I Callbacks | Histary I Drescription I
Model infarmation
Created by: IThe Mathiafarks Inc. Last saved by: Ibatserve
Created or: Eug 1816:03:19 2000 Last saved on: IApr 21 03:46:41 2004
¥ Fead Only Model version: |1_2
Model history:
Frompt to update model history: I Mever 'l

The History pane has two panels: the Model information panel and the
Model History panel.

Version Information Panel

The contents of the Version information panel depend on the item selected in
the list at the top of the panel. When View current values is selected, the
panel shows the following fields.

Created by. Name of the person who created this model. Simulink sets this
property to the value of the USER environment variable when you create the
model. Edit this field to change the value.

Created on. Date and time this model was created.

Model version. Version number for this model. You cannot edit this field.

4-107

4 Creating a Model

Last saved by. Name of the person who last saved this model. Simulink sets the
value of this parameter to the value of the USER environment variable when you
save a model.

Last saved date. Date that this model was last saved. Simulink sets the value of
this parameter to the system date and time whenever you save a model.

Read Only. Deselecting this option shows the format strings for each of the
fields listed when the option is selected.

E! Model Properties ﬂﬂ
Main I Callbacks | Histary I Drescription I
Model infarmation
Created by: IThe Mathiwarks Inc. Last zaved by: |X<Aut0>
Created on: IFri Aug1816:03192000 Last saved on: |X<Aut0>
I~ Read Only Model version: |1_X<Autolncrement:2>
Model history:
Frompt to update model history: I Mever 'l
Ok | Lancel | Apply |

Model version. Enter a format string describing the format used to display the
model version number in the Model Properties pane and in Model Info blocks.
The value of this parameter can be any text string. The text string can include
occurrences of the tag %$<AutoIncrement:#> where # is an integer. Simulink
replaces the tag with an integer when displaying the model’s version number.
For example, it displays the tag

1.%<AutoIncrement:2>

4-108

Managing Model Versions

as

1.2

Simulink increments # by 1 when saving the model. For example, when you
save the model,

1.%<1.%<AutoIncrement:2>

becomes

1.%<1.%<AutoIncrement:3>

and Simulink reports the model version number as 1.3.

Last saved by. Enter a format string describing the format used to display the
Last saved by value in the History pane and the ModifiedBy entry in the
history log and Model Info blocks. The value of this field can be any string. The
string can include the tag %<Auto>. Simulink replaces occurrences of this tag
with the current value of the USER environment variable.

Last saved on. Enter a format string describing the format used to display the
Last saved on date in the History pane and the ModifiedOn entry in the
history log and the in Model Info blocks. The value of this field can be any
string. The string can contain the tag %<Auto>. Simulink replaces occurrences
of this tag with the current date and time.

Model History Panel

The model history panel contains a scrollable text field and an option list. The
text field displays the history for the model in a scrollable text field. To change
the model history, edit the contents of this field. The option list allows you to
enable or disable the Simulink model history feature. To enable the history
feature, select When saving model from the Prompt to update model history
list. This causes Simulink to prompt you to enter a comment when saving the
model. Typically you would enter any changes that you have made to the model
since the last time you saved it. Simulink stores this information in the model’s
change history log. See “Creating a Model Change History” on page 4-110 for
more information. To disable the change history feature, select Never from the
Prompt to update model history list.

4-109

4 Creating a Model

Model Description Pane
This pane allows you to enter a description of the model.

[=IModel Properties ed b3

Main I Callbacks I Hiztory |

Model description:

Ok I Lancel | Help | Apply |

Creating a Model Change History
Simulink allows you to create and store a record of changes to a model in the

model itself. Simulink compiles the history automatically from comments that
you or other users enter when they save changes to a model.

Logging Changes

To start a change history, select When saving model from the Prompt to
update model history list on the History pane on the Simulink Model
Properties dialog box. The next time you save the model, Simulink displays a
Log Change dialog box.

4-110

Managing Model Versions

+ |Log Change: vdp_modelinfo E

Modified Comment:

Paulk. -- Mon Jul 27 17:22:51 1333

¥ Show thiz dialog box nest time when save
V' Include "Modified Cormments" in "Modified History'

Save |

To add an item to the model’s change history, enter the item in the Modified
Comments edit field and click Save. If you do not want to enter an item for this
session, clear the Include “Modified Contents” in “Modified History” option.
To discontinue change logging, clear the Show this dialog box next time
when save option.

Version Control Properties

Simulink stores version control information as model parameters in a model.
You can access this information from the MATLAB command line or from an
M-file, using the Simulink get_param command. The following table describes
the model parameters used by Simulink to store version control information.

Property Description

Created Date created.

Creator Name of the person who created this model.
ModifiedBy Person who last modified this model.

4-111

4 Creating a Model

Property Description

ModifiedByFormat Format of the ModifiedBy parameter. Value
can be any string. The string can include
the tag %<Auto>. Simulink replaces the tag
with the current value of the USER
environment variable.

ModifiedDate Date modified.

ModifiedDateFormat Format of the ModifiedDate parameter.
Value can be any string. The string can
include the tag %<Auto>. Simulink replaces
the tag with the current date and time
when saving the model.

ModifiedComment Comment entered by user who last updated
this model.

ModifiedHistory History of changes to this model.

ModelVersion Version number.

ModelVersionFormat Format of model version number. Can be

any string. The string can contain the tag
%<AutoIncrement:#> where # is an integer.
Simulink replaces the tag with # when
displaying the version number. It
increments # when saving the model.

Description Description of model.

LastModificationDate Date last modified.

4-112

Working with Blocks

This section explores the following block-related topics.

About Blocks (p. 5-2)

Editing Blocks (p. 5-4)
Setting Block Parameters (p. 5-7)

Changing a Block’s Appearance
(p. 5-14)

Displaying Block Outputs (p. 5-18)

Controlling and Displaying the Sorted
Order (p. 5-20)

Lookup Table Editor (p. 5-22)
Working with Block Libraries (p. 5-29)

Accessing Block Data During
Simulation (p. 5-40)

Explains the difference between virtual and nonvirtual
blocks.

How to cut and paste blocks.
How to set parameters that determine a block’s behavior.

How to change the size, orientation, color, and labeling of
a block.

How to display the values of block outputs on the block
diagram during simulation.

How to set a block’s execution priority and display its
execution order.

How to change the elements of lookup table blocks.
How to create and use block libraries.

How to use the Simulink runtime block API to access
block data during a simulation.

5 Working with Blocks

About Blocks

5-2

Blocks are the elements from which Simulink models are built. You can model
virtually any dynamic system by creating and interconnecting blocks in
appropriate ways. This section discusses how to use blocks to build models of
dynamic systems.

Block Data Tips

On Microsoft Windows, Simulink displays information about a block in a
pop-up window when you allow the pointer to hover over the block in the
diagram view. To disable this feature or control what information a data tip
includes, select Block data tips options from the Simulink View menu.

Virtual Blocks

When creating models, you need to be aware that Simulink blocks fall into two
basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play an
active role in the simulation of a system. If you add or remove a nonvirtual
block, you change the model’s behavior. Virtual blocks, by contrast, play no
active role in the simulation; they help organize a model graphically. Some
Simulink blocks are virtual in some circumstances and nonvirtual in others.
Such blocks are called conditionally virtual blocks. The following table lists
Simulink virtual and conditionally virtual blocks.

Block Name Condition Under Which Block Is Virtual

Bus Selector Always virtual.

Demux Always virtual.

Enable Virtual unless connected directly to an Outport
block.

From Always virtual.

Goto Always virtual.

Goto Tag Visibility Always virtual.

Ground Always virtual.

About Blocks

Block Name

Condition Under Which Block Is Virtual

Inport

Mux

Outport

Selector
Signal Specification

Subsystem

Terminator

Trigger

Virtual unless the block resides in a conditionally
executed subsystem and has a direct connection to
an outport block.

Always virtual.

Virtual when the block resides within any
subsystem block (conditional or not), and does not
reside in the root (top-level) Simulink window.

Virtual except in matrix mode.
Always virtual.

Virtual unless the block is conditionally executed
and/or the block’s Treat as Atomic Unit option is
selected.

Always virtual.

Virtual when the outport port is not present.

5-3

5 Working with Blocks

Editing Blocks

5-4

The Simulink Editor allows you to cut and paste blocks in and between models.

Copying and Moving Blocks from One Window to
Another

As you build your model, you often copy blocks from Simulink block libraries or
other libraries or models into your model window. To do this, follow these steps:

1 Open the appropriate block library or model window.

2 Drag the block to copy into the target model window. To drag a block,
position the cursor over the block, then press and hold down the mouse
button. Move the cursor into the target window, then release the mouse
button.

You can also drag blocks from the Simulink Library Browser into a model
window. See “Browsing Block Libraries” on page 5-36 for more information.

Note Simulink hides the names of Sum, Mux, Demux, Bus Creator, and Bus
Selector blocks when you copy them from the Simulink block library to a
model. This is done to avoid unnecessarily cluttering the model diagram. (The
shapes of these blocks clearly indicate their respective functions.)

You can also copy blocks by using the Copy and Paste commands from the Edit
menu:

1 Select the block you want to copy.
2 Choose Copy from the Edit menu.
3 Make the target model window the active window.

4 Choose Paste from the Edit menu.

Simulink assigns a name to each copied block. If it is the first block of its type
in the model, its name is the same as its name in the source window. For

Editing Blocks

example, if you copy the Gain block from the Math library into your model
window, the name of the new block is Gain. If your model already contains a
block named Gain, Simulink adds a sequence number to the block name (for
example, Gainl, Gain2). You can rename blocks; see “Manipulating Block
Names” on page 5-15.

When you copy a block, the new block inherits all the original block’s parameter
values.

Simulink uses an invisible five-pixel grid to simplify the alignment of blocks.
All blocks within a model snap to a line on the grid. You can move a block
slightly up, down, left, or right by selecting the block and pressing the arrow
keys.

You can display the grid in the model window by typing the following command
in the MATLAB window.

set_param('<model name>', 'showgrid', 'on')
To change the grid spacing, enter

set_param('<model name>', 'gridspacing',<number of pixels>)

For example, to change the grid spacing to 20 pixels, enter
set_param('<model name>', 'gridspacing',20)
For either of the above commands, you can also select the model, then enter gcs

instead of <model name>.

You can copy or move blocks to compatible applications (such as word
processing programs) using the Copy, Cut, and Paste commands. These
commands copy only the graphic representation of the blocks, not their
parameters.

Moving blocks from one window to another is similar to copying blocks, except
that you hold down the Shift key while you select the blocks.

You can use the Undo command from the Edit menu to remove an added block.

Moving Blocks in a Model

To move a single block from one place to another in a model window, drag the
block to a new location. Simulink automatically repositions lines connected to
the moved block.

5-5

5 Working with Blocks

5-6

To move more than one block, including connecting lines:

1 Select the blocks and lines. If you need information about how to select more
than one block, see “Selecting More Than One Object” on page 4-3.

2 Drag the objects to their new location and release the mouse button.

Copying Blocks in a Model

You can copy blocks in a model as follows. While holding down the Ctrl key,
select the block with the left mouse button, then drag it to a new location. You
can also do this by dragging the block using the right mouse button. Duplicated
blocks have the same parameter values as the original blocks. Sequence
numbers are added to the new block names.

Deleting Blocks

To delete one or more blocks, select the blocks to be deleted and press the
Delete or Backspace key. You can also choose Clear or Cut from the Edit
menu. The Cut command writes the blocks into the clipboard, which enables
you to paste them into a model. Using the Delete or Backspace key or the
Clear command does not enable you to paste the block later.

You can use the Undo command from the Edit menu to replace a deleted block.

Sefting Block Parameters

Setting Block Parameters

All Simulink blocks have a common set of parameters, called block properties,
that you can set (see “Common Block Parameters” in the online Simulink
Help). See “Block Properties Dialog Box” on page 5-9 for information on setting
block properties. In addition, many blocks have one or more block-specific
parameters that you can set (see “Block-Specific Parameters” in the online
Simulink reference). By setting these parameters, you can customize the
behavior of the block to meet the specific requirements of your model.

Setting Block-Specific Parameters

Every block that has block-specific parameters has a dialog box that you can
use to view and set the parameters. You can display this dialog by selecting the
block in the model window and choosing BLOCK Parameters from the model
window’s Edit menu or from the model window’s context (right-click) menu,
where BLOCK is the name of the block you selected, e.g., Constant
Parameters. You can also display a block’s parameter dialog box by
double-clicking its icon in the model or library window.

Note This holds true for all blocks with parameter dialog boxes except for the
Subsystem block. You must use the model window’s Edit menu or context
menu to display a Subsystem block’s parameter dialog.

For information on the parameter dialog of a specific block, see the block’s
documentation in the “Simulink Blocks” in the online Simulink Help.

You can set any block parameter, using the Simulink set_param command. See
set_param in the online Simulink Help for details.

You can use any MATLAB constant, variable, or expression that evaluates to
an acceptable result when specifying the value of a parameter in a block
parameter dialog or a set_param command. You can also use variables or
expressions that evaluate to Simulink.Parameter data objects as parameters
(see “Working with Data Objects” on page 7-10).

5-7

5 Working with Blocks

5-8

Tuning Parameters

Simulink lets you change the values of block parameters during simulation.
You can use a block’s parameter dialog box or the MATLAB Command Line to
tune block parameters. To use the block’s parameter dialog box, open the
block’s parameter dialog box, change the value displayed in the dialog box, and
click the dialog box’s OK or Apply button. You can use the set_param command
to change the value of a variable at the MATLAB Command Line during
simulation. Or, if the model uses a MATLAB workspace variable to specify the
parameter’s value, you can change the parameter’s value by assigning a new
value to the variable. In either case, you must update the model’s block
diagram for the change to take effect.

Inlining Parameters

You can declare some or all of a model’s parameters as nontunable. Declaring
a parameter as nontunable allows the Real-Time Workshop to include the
parameter as a constant in code generated from the model, an optimization
known as inlining a parameter. To inline all of a model’s parameters, select the
Inline parameters option on the Optimization pane of the model’s active
configuration set.

To inline some but not all of a model’s parameters, you must first declare all of
the parameters as inlined by selecting the Inline parameters option on the
active set’s Optimization pane. You must then specify the exceptions, using
either the Model Parameter Configuration dialog box (see “Model Parameter
Configuration Dialog Box” on page 10-47) or Simulink.Parameter objects.

Using Parameter Objects to Specify Parameter Tunability

To declare a parameter to be tunable even when the Inline parameters option
is set, use an instance of Simulink.Parameter class to specify the parameter’s
value and set the parameter object’s RTWInfo.StorageClass property to any
value but 'Auto' (the default).

gain.RTWInfo.StorageClass = 'SimulinkGlobal';
If you set the RTWInfo.StorageClass property to any value other than Auto,

you should not include the parameter in the tunable parameters table in the
model’s Model Parameter Configuration dialog box.

Sefting Block Parameters

Note Simulink halts the simulation and displays an error message if it
detects a conflict between the properties of a parameter as specified by a
parameter object and the properties of the parameter as specified in the
Model Parameter Configuration dialog box.

Block Properties Dialog Box

This dialog box lets you set a block’s properties. To display this dialog, select
the block in the model window and then select Block Properties from the Edit
menu.

-} Block Properties: Product] |

General BIockAnnotationl Eallbacksl

Information

General block properties.

Description: test field that is generally used for saving comments about the
block.

Fririty: specifies the block's sequencing during execution relative to other
blocks with priorities in the same window.

Tag: a general text field as label which iz saved with the block.

Description:

Pricrity:

QK | Cancel | Help | Apply |

The dialog box contains the following tabbed panes.

General Pane
This pane allows you to set the following properties.

5 Working with Blocks

5-10

Description. Brief description of the block’s purpose.

Priority. Execution priority of this block relative to other blocks in the model.
See “Assigning Block Priorities” on page 5-20 for more information.

Tag. Text that is assigned to the block’s Tag parameter and saved with the
block in the model. You can use the tag to create your own block-specific label
for a block.

Block Annotation Pane

The block annotation pane allows you to display the values of selected
parameters of a block in an annotation that appears beneath the block’s icon.

+} Block Properties: Product =0 x]

Callbacks |

General | Block &nnotation

Information

Block annotation iz a gt of string shown below the block name. Available
block property tokens are listed on the left for uzer to choose from. The
annotation text can be edited on the right side edit field. See example spntax
ot the bottarn.

Block property tokens: Enter text and tokens for annotation:

% groun
*%<BlockDescription:
*%<BlockType>
#<DataTypelveride.
*<Description:
*<Diagnostics>
*<DropShadow:
*%<ForegroundColors
#«<Handle:»
#<Hilitedncestors:
*<|nputSameD T
*<|nputs>
F«LinkStatus:
%<LockScale:
FeMask:

ehaskTypes
H<Mint axDverflowlc T Example spntas:
4 4 Mame=%<Mame:

QK | Cancel | Help | |

Enter the text of the annotation in the text field that appears on the right side
of the pane. The text can include block property tokens, for example

%s<Name>
Priority = %<priority>

Sefting Block Parameters

of the form %<param> where param is the name of a parameter of the block.
When displaying the annotation, Simulink replaces the tokens with the values
of the corresponding parameters, e.g.,

Product
Priorty = 2

The block property tag list on the left side of the pane lists all the tags that are
valid for the currently selected block. To include one of the listed tags in the
annotation, select the tag and then click the button between the tag list and the
annotation field.

You can also create block annotations programmatically. See “Creating Block
Annotations Programmatically” on page 5-12.

Callbacks Pane

The Callbacks Pane allows you to specify implementations for a block’s
callbacks (see “Using Callback Routines” on page 4-90).

.-__:fﬁ:BIock Properties: Sum :0 - | Ellll

Generall Elock P.nnotationl Callbacksl

— Usage

To create or edit a callback function for this block, select it in the callback
list (helow, left). Then enter MATLAB code that implements the function in
the content pane (below, right). The callback name’s suffix indicates its
status: “(has saved content).

Callback functions list: Content of callback function: "ClipboardFcn®

C| ridF
CloseFcn
CopyFcn
DeleteFcn
DestroyFcn
InitFcn

LoadFcn
ModelCloseFcn
roveFcn
MNameChangeFcn
OpenFcn
FParentCloseFcn

I

Ok Cancel Help

5-11

5 Working with Blocks

5-12

To specify an implementation for a callback, select the callback in the callback
list on the left side of the pane. Then enter MATLAB commands that
implement the callback in the right-hand field. Click OK or Append to save the
change. Simulink appends an asterisk to the name of the saved callback to
indicate that it has been implemented.

Creating Block Annotations Programmatically

You can use a block’s AttributesFormatString parameter to display selected
parameters of a block beneath the block as an “attributes format string,” i.e. a
string that specifies values of the block’s attributes (parameters). The “Model
and Block Parameters” section in the online Simulink reference describes the
parameters that a block can have. Use the Simulink set_param command to set
this parameter to the desired attributes format string.

The attributes format string can be any text string that has embedded
parameter names. An embedded parameter name is a parameter name
preceded by %< and followed by >, for example, %<priority>. Simulink displays
the attributes format string beneath the block’s icon, replacing each parameter
name with the corresponding parameter value. You can use line-feed
characters (\n) to display each parameter on a separate line. For example,
specifying the attributes format string

pri=%s<priority>\ngain=%<Gain>

for a Gain block displays

[’
Gain

pri=i0
gain=1

If a parameter’s value is not a string or an integer, Simulink displays N/S (not
supported) for the parameter’s value. If the parameter name is invalid,
Simulink displays “???” as the parameter value.

State Properties Dialog Box

The State Properties dialog box allows you to specify code generation options
for certain blocks with discrete states. To get help on using this dialog box, you
must install the Real-Time Workshop documentation. See “Block States:

Sefting Block Parameters

Storing and Interfacing” in the online documentation for Real-Time Workshop
for more information.

5-13

5 Working with Blocks

Changing a Block’s Appearance

5-14

The Simulink Editor allows you to change the size, orientation, color, and label
location of a block in a block diagram.

Changing the Orientation of a Block

By default, signals flow through a block from left to right. Input ports are on
the left, and output ports are on the right. You can change the orientation of a
block by choosing one of these commands from the Format menu:

¢ The Flip Block command rotates the block 180 degrees.
¢ The Rotate Block command rotates a block clockwise 90 degrees.

The figure below shows how Simulink orders ports after changing the
orientation of a block using the Rotate Block and Flip Block menu items. The
text in the blocks shows their orientation.

1 2 3
V_V V

Rot%’ Down \
1> * 1

Left) Right
to 4—— Flip —p | to K
Right Left

3> * 3
& Up %e

NN
12/?>

Rotate

Rotate

Resizing a Block

To change the size of a block, select it, then drag any of its selection handles.
While you hold down the mouse button, a dotted rectangle shows the new block
size. When you release the mouse button, the block is resized.

Changing a Block's Appearance

For example, the figure below shows a Signal Generator block being resized.
The lower-right handle was selected and dragged to the cursor position. When
the mouse button is released, the block takes its new size.

This figure shows a block being resized.

oooo] i
[=Y=] ;

Signal
enerator |

Displaying Parameters Beneath a Block

You can cause Simulink to display one or more of a block’s parameters beneath
the block. You specify the parameters to be displayed in the following ways:

¢ By entering an attributes format string in the Attributes format string field
of the block’s Block Properties dialog box (see “Block Properties Dialog Box”
on page 5-9)

¢ By setting the value of the block’s AttributesFormatString property to the
format string, using set_param

Using Drop Shadows

You can add a drop shadow to a block by selecting the block, then choosing
Show Drop Shadow from the Format menu. When you select a block with a
drop shadow, the menu item changes to Hide Drop Shadow. The figure below
shows a Subsystem block with a drop shadow.

o

Manipulating Block Names

All block names in a model must be unique and must contain at least one
character. By default, block names appear below blocks whose ports are on the
sides, and to the left of blocks whose ports are on the top and bottom, as the
following figure shows.

5-15

5 Working with Blocks

5-16

)D} Top to boﬂomv

~
Left ta right

Note Simulink commands interprets a forward slash, i.e., /, as a block path
delimiter. For example, the path vdp/Mu designates a block named Mu in the
model named vdp. Therefore, avoid using forward slashes (/) in block names to
avoid causing Simulink to interpret the names as paths.

Changing Block Names

You can edit a block name in one of these ways:

¢ To replace the block name, click the block name, double-click or drag the
cursor to select the entire name, then enter the new name.

¢ To insert characters, click between two characters to position the insertion
point, then insert text.

® To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

When you click the pointer anywhere else in the model or take any other action,
the name is accepted or rejected. If you try to change the name of a block to a
name that already exists or to a name with no characters, Simulink displays
an error message.

You can modify the font used in a block name by selecting the block, then
choosing the Font menu item from the Format menu. Select a font from the
Set Font dialog box. This procedure also changes the font of any text that
appears inside the block.

You can cancel edits to a block name by choosing Undo from the Edit menu.

Note If you change the name of a library block, all links to that block become
unresolved.

Changing a Block's Appearance

Changing the Location of a Block Name
You can change the location of the name of a selected block in two ways:

¢ By dragging the block name to the opposite side of the block.

® By choosing the Flip Name command from the Format menu. This
command changes the location of the block name to the opposite side of the
block.

For more information about block orientation, see “Changing the Orientation
of a Block” on page 5-14.

Changing Whether a Block Name Appears

To change whether the name of a selected block is displayed, choose a menu
item from the Format menu:

¢ The Hide Name menu item hides a visible block name. When you select Hide
Name, it changes to Show Name when that block is selected.

¢ The Show Name menu item shows a hidden block name.

Specifying a Block’s Color
See “Specifying Block Diagram Colors” on page 4-5 for information on how to
set the color of a block.

5-17

5 Working with Blocks

5-18

Displaying Block Outputs

Simulink can display block outputs as data tips on the block diagram while a
simulation is running.

van der Pol Equation

Qut2

.,._| ()

Qutl
w

Scope
The van der Pol Equation R -
(Doubk-click on the "2° for more info) Louble-click
here for
Simulink Help

To start and stop the simulation, use the *Start/Stop”
sakection in the "Simulation” pulldown meanu

You can specify whether and when to display block outputs (see “Enabling Port
Values Display” on page 5-18) and the size and format of the output displays
and the rate at which Simulink updates them during a simulation (see “Port
Values Display Options” on page 5-19).

Enabling Port Values Display

To turn display of port output values on or off, select Port Values from the
model editor’s View menu. A menu of display options appears. Select one of the
following display options from the menu:

® Show none

Turns port value displaying off.

¢ Show when hovering
Displays output port values for the block under the mouse cursor.
* Toggle when selected

Selecting a block displays its outputs. Reselecting the block turns the display
off.

Displaying Block Outputs

When using the Microsoft Windows version of Simulink, you can turn block
output display when hovering on or off from the model editor’s toolbar. To do

this, select the block output display button on the toobar.

B =10l x|

’|

Qut2

Click to show/hide block output when hovering

Port Values Display Options

To specify other display options, select Port Values -> Options from the model
editor’s View menu. The Block Output Display Options dialog box appears.

wdp - Block Dutput Display Options

—Display option:

Font size: [ptz] I)I

Fiefreszh interval [z): o

—Display values:

' Show Mane

= Show When Hovering Togale when Selected

—Display Format

Floating pairt: I %8.3g 'l

Fix point [stored integer): I short 'l

To increase the size of the output display text, move the Font size slider to the
right. To increase the rate at which Simulink updates the displays, move the

Refresh interval slider to the left.

5-19

5 Working with Blocks

Controlling and Displaying the Sorted Order

The sorted order is an ordering of the blocks in the model that Simulink uses
as a starting point for determining the order in which to invoke the blocks’
methods during simulation. Simulink allows you to display the sorted order for
a model and to assign priorities to blocks that can influence where they appear
in the sorted order.

Displaying the Sorted Order

To display the sorted order, select Sorted order from the Simulink Format
menu. Selecting this option causes Simulink to display a notation in the top
right corner of each block in a block diagram.

Qut2

: .. *1 » (:D

Qutl

Scope

The notation for most blocks has the format s:b, where s specifies the index of
the subsystem to whos execution context (see “Conditional Execution
Behavior” on page 4-38) the block belongs and b specifies the block’s position in
the sorted order for that execution context. The sorted order of a Function-Call
Subsystem cannot be determined at compile time. Therefore, for these
subsystems, Simulink uses either the notation s:F, if the system has one
initiator, where s is the index of the subsystem that contains the initiator, or
the notation M, if the subsystem has more than one initiator.

Assigning Block Priorities

You can assign priorities to nonvirtual blocks or virtual subsystem blocks in a
model (see “Virtual Blocks” on page 5-2). Higher priority blocks appear before
lower priority blocks in the sorted order, though not necessarily before blocks
that have no assigned priority.

You can assign block priorities interactively or programmatically. To set
priorities programmatically, use the command

5-20

Controlling and Displaying the Sorted Order

set_param(b, 'Priority','n')

where b is a block path and n is any valid integer. (Negative numbers and 0 are
valid priority values.) The lower the number, the higher the priority; that is, 2
is higher priority than 3. To set a block’s priority interactively, enter the
priority in the Priority field of the block’s Block Properties dialog box (see
“Block Properties Dialog Box” on page 5-9).

Simulink honors the block priorities that you specify only if they are consistent
with the Simulink block sorting algorithm. If Simulink is unable to honor a
block priority, it displays a Block Priority Violation diagnostic message
(see “The Diagnostics Pane” on page 10-48).

5-21

5 Working with Blocks

Lookup Table Editor

The Lookup Table Editor allows you to inspect and change the table elements
of any lookup table (LUT) block in a model (see “Lookup Tables” in the online
Simulink documentation), including custom LUT blocks that you have created,
using the Simulink Mask Editor (see “Editing Custom LUT Blocks” on

page 5-27). You can also use a block’s parameter dialog to edit its table.
However, that requires you to open the subsystem containing the block first
and than its parameter dialog box first The LUT editor allows you to skip these

steps. This section explains how to open and use the LUT editor to edit LUT
blocks.

Note You cannot use the LUT Editor to change the dimensions of a lookup
table. You must use the block’s parameter dialog box for this purpose.

To open the editor, select Lookup table editor from the Simulink Tools menu.
The editor appears.

<} Look-Up Table Editor: fuelsys/fuel rate controller/Airflow calculationi = |EI|1|
File Plot Help
Lngdels: Block Parameters Data:
fuelsys | | |[ereapaints [-coumn—» (1) (2) (3)
[Table blocks: --Row-- 0.05 0.1 0.15 =
;ifl fuel rate controller (13 50 -0.055635 0.0184533 0.041948
- 25 Airlow calculation (2 75 -0.0022828 0.046509) 0.061466
e Lmping Constant
| Ramp Rate (KD @ 100 0.025693| 0.061797) 0.072524
- 2] Sensor correction and F () 125 0.043518] 0.07201 0.0802
| throttle cormmand (5} 150 0.0562649 0.079685 0.086183
(B} 175 0.0661149 0.08591 0.0912
T 0 nn741A70 nna177al nno&R1 7_l_'|
Jq | 12 | | »

The editor contains two panes. The pane on the left is a LUT block browser. It
allows you to browse and select LUT blocks in any open model (see “Browsing
LUT Blocks” on page 5-23). The pane on the right allows you to edit the selected
block’s lookup table (“Editing Table Values” on page 5-24).

5-22

Lookup Table Editor

Browsing LUT Blocks

The Models list in the upper left corner of the LUT Editor lists the names of all
models open in the current MATLAB session.To browse any open model’s LUT
table blocks, select the model’s name from the list. A tree-structured view of the
selected model’s LUT blocks appears in the Table blocks field beneath the
Models list.

Models:
fuelsys - g
[Tahle blocks:

jizliicl rate cortroller

[#1- 28 Airflow calculation
-2 Sensor correction and Fy
L thrattle cornmand

JE1 I]

The tree view initially lists all the LUT blocks that reside at the model’s root
level. It also displays any subsystems that contain LUT blocks. Clicking the
expand button (+) to the left of the subsystem’s name expands the tree to show
the LUT blocks in that subsystem. The expanded view also shows any
subsystems in the expanded subsystem. You can continue expanding
subsystem nodes in this manner to display LUT blocks at any level in the model
hierarchy.

Clicking any LUT block in the LUT block tree view displays the block’s lookup
table in the right hand pane, allowing you to edit the table (see“Editing Table
Values” on page 5-24).

Note If you want to browse the LUT blocks in a model that is not currently
open, you can command the LUT Editor to open the model. To do this, select
Open from the LUT Editor’s File menu.

5-23

5 Working with Blocks

Editing Table Values

The Block parameters data table view of the LUT Editor allows you to edit
the lookup table of the LUT block currently selected in the adjacent tree view.

Block Parameters Data:

Breakpoints | --Calumn--= {13 3] (3
--Row-- 0.05 0.1 0.15 o
(1) 50 -0.055635 0.018533) 0.041948
[#3) 75 -0.0022828) 0046509 0.061466
(3 100 0.025693] 0.061797| 0.072524
4 125 0.0435189 0.0720 0.0802
() 150 0.056269| 0.079685) 0.086183
(6} 175 0.0661189 0.08591 0.0912
’ T 200 nn7a1a7l nnat?7al nnask ?_>|_vl

The table view displays the entire table if it is one- or two-dimensional or a
two-dimensional slice of the table if the table has more than two dimensions
(see “Displaying N-D Tables” on page 5-25). To change any of the displayed
values, double-click the value. The LUT Editor replaces the value with an edit
field containing the value. Edit the value, then press Enter or click outside the
field to confirm the change.

The LUT Editor records your changes in a copy of the table that it maintains.
To update the copy maintained by the LUT block itself, select Update block
data from the LUT Editor’s File menu. To restore the LUT Editor ‘s copy to the
values stored in the block, select Reload block data from the File menu.

5-24

Lookup Table Editor

Displaying N-D Tables
If the lookup table of the LUT block currently selected in the LUT Editor’s tree

view has more than two dimensions, the editor’s table view displays a
two-dimensional slice of the table.

Block Parameters Data:

4] o] 3 G

2401 2421 2441 2461 -

2402 2422 24437 2462

2403 2423 2443 2463

2404 2424 2444 2464

2405 2425 2445 2465

2406 2426 2446 2466

2407 2427 2447 2467

2408 2428 2448 2468

2408 2429 24459 24649 LI
n-D Data Dimension Selectar: viewing table data: ¢, 1,7)
Dimension size 20 4 5 7
Select 2-D slice 2 = 2 = 1 = i -
Select row axis o e el (e
Select column axis ol o el (e

The n-D Data Dimension Selector beneath the table specifies which slice
currently appears and allows you to select another slice. The selector consists
of a 4-by-N array of controls where N is the number of dimensions in the lookup
table. Each column corresponds to a dimension of the lookup table. The first
column corresponds to the first dimension of the table, the second column to the
second dimension of the table, and so on. The top row of the selector array
displays the size of each dimension. The remaining rows specify which
dimensions of the table correspond to the row and column axes of the slice and
the indices that select the slice from the remaining dimensions.

To select another slice of the table, click the Select row axis and Select
column axis radio buttons in the columns that correspond to the dimensions
that you want to view. Then select the indexes of the slice from the pop-up
index lists in the remaining columns.

5-25

5 Working with Blocks

For example, the following selector displays slice (:,: ,1,7) of a 4-D table.

n-D Data Dimension Selectar: viewing table data: ¢, 1,7)

Dimension size 20 4 5 7
Select 2-D slice 2 = 2 = 1 = i -
Select row axis o e el (e
Select column axis ol o el (e

Plotting LUT Tables

Select Linear or Mesh from the Plot menu of the LUT Editor to display a
linear or mesh plot of the table or table slice currently displayed in the editor’s

table view.
<} Look-Up Table Editor: fuelsys/fuel rate controller/Airflow calculation/Pumping Con: ;|g|5|
File Flat Help
Lf\gdemi Block Parameters Data:
fuelsys =1 | |[erearpoints [~coumn—=| a3 @ @) i i
[Table blocks: --Row-- 0.05 0.1 0.15 0.2 0.~
_ﬁﬂ fuel rate cantraller (1} 50 -0.055635 0.0184533 0.041948 0.052676 0.c
E‘.ﬁf‘ Al (2} 75 -0.0022828 0.0465049 0.061 466 0.067964 0.c
g 3 (3 100 0025693 0.061797) 0072524 0076808 0.C
/2] Sensor correction and F () 125 0043518 0.07201 00802 0083314 OO
|E throttle command (5} 150 0.0562649 0.079685 0.086183 0.088452 0.c
(B} 175 0.0661149 0.08591 0.0912 0.092865 0.c
(7} 200 0.074157 0.0912249 0.095612 0.096824 0.c
(8 250 0.08697 010024 010335 010393 _DI_VI
4 | »
4| | »

025

02r

0151

01r

005+

005+

01
0

5-26

Lookup Table Editor

Editing Custom LUT Blocks

You can use the LUT Editor to edit custom lookup table blocks that you or
others have created. To do this, you must first configure the LUT Editor to

recognize the custom LUT blocks in your model. Once you have configured the
LUT Editor to recognize the custom blocks, you can edit them as if they were

standard blocks.

To configure the LUT editor to recognize custom LUT blocks, select Configure
from the editor’s File menu. The Look-Up Table Blocks Type Configuration

dialog box appears.

<} Look-Up Table Blocks Type Configuration

v Lse Simulink default look-up table blacks list

:

x|

|n] Block Type Maszk Type Breakpoint Mame Tahle Mame Mumber of dimens...| Explicit dimensions
1 |Lookup Inputvalues Qutputvalues

2 |5-Function Fixed-Paint Look-... [#LookUpData LookUpData

3 |5-Function Fixed-Paint Look-... |RowLookUpData,... (TableLookUpData

4 |3-Function Fixed-Point Look-...

5 |5-Function LookupldsSearch |bpData

B |5-Function LookupMDDirect mxTable masktahDims explicitumbDims
T |5-Function LookupMDinterp bp1,bp2,bp3 bpd b tahleData numbDimsPopups... [explicitNumDims
8 |5-Function LookupMDinterpldx tahle numbDimsPopups... [explicitNumDims
9 |5-Function S-function: sftahle2 [xindex_idxyindex_i... [tahle_idx

10 |S-Function S-function: sfun_di... [<VECT WECT

11 |SuhSystem Lookup Table {2-0 [xy t

12 |SuhSystem Repeating table rep_seq_t rep_seq_y

Add

Rermoye |

Ok | Cancel |

By default the dialog box displays a table of the types of LUT blocks that the
LUT Editor currently recognizes. By default these are the standard Simulink
LUT blocks. Each row of the table displays key attributes of a LUT block type.

Adding a Custom LUT Type
To add a custom block to the list of recognized types,

1 Select the Add button on the dialog box.

A new row appears at the bottom of the block type table.

5-27

5 Working with Blocks

2 Enter information for the custom block in the new row under the following

headings.
Field Name Description
Block Type Block type of the custom LUT block. The block type
is the value of the block’s BlockType parameter.
Mask Type Mask type in this field. The mask type is the value

of the block’s MaskType parameter.

Breakpoint Name Names of the custom LUT block’s parameters that
store its breakpoints.

Table Name Name of the block parameter that stores the
custom block’s lookup table.

Number of Leave empty.

dimensions

Explicit Dimensions = Leave empty.

3 Select OK.

Removing Custom LUT Types

To remove a custom LUT type from the list of types recognized by the LUT
Editor, select the custom type’s entry in the table in the Look-Up Table Blocks
Type Configuration dialog box. Then select Remove. To remove all custom
LUT types, check the check box labeled Use Simulink default look-up table
blocks list at the top of the dialog box.

5-28

Working with Block Libraries

Working with Block Libraries

Libraries enable users to copy blocks into their models from external libraries
and automatically update the copied blocks when the source blocks change.
Using libraries allows users who develop their own block libraries, or who use
those provided by others (such as blocksets), to ensure that their models
automatically include the most recent versions of these blocks.

Terminology
It is important to understand the terminology used with this feature.

Library — A collection of library blocks. A library must be explicitly created
using New Library from the File menu.

Library block — A block in a library.
Reference block — A copy of a library block.

Link — The connection between the reference block and its library block that
allows Simulink to update the reference block when the library block changes.

Copy — The operation that creates a reference block from either a library block
or another reference block.

This figure illustrates this terminology.

link
= ﬁ
e v it
library Py reference
block block
Library (Source) Model or Library (Destination)

Simulink Block Library

Simulink comes with a library of standard blocks called the Simulink block
library. See “Starting Simulink” on page 3-2 for information on displaying and
using this library.

5-29

5 Working with Blocks

5-30

Creating a Library

To create a library, select Library from the New submenu of the File menu.
Simulink displays a new window, labeled Library: untitled. If an untitled
window already appears, a sequence number is appended.

You can create a library from the command line using this command:

new_system('newlib', 'Library")

This command creates a new library named 'newlib'. To display the library,
use the open_system command. These commands are described in “Model
Construction Commands” in the online Simulink reference.

The library must be named (saved) before you can copy blocks from it. See
“Adding Libraries to the Library Browser” on page 5-38 for information on how
to point the Library Browser to your new library.

Modifying a Library
When you open a library, it is automatically locked and you cannot modify its

contents. To unlock the library, select Unlock Library from the Edit menu.
Closing the library window locks the library.

Creating a Library Link

To create a link to a library block in a model, copy the block from the library to
the model (see “Copying and Moving Blocks from One Window to Another” on
page 5-4) or by dragging the block from the Library Browser (see “Browsing
Block Libraries” on page 5-36) into the model window.

When you copy a library block into a model or another library, Simulink creates
alink to the library block. The reference block is a copy of the library block. You
can change the values of the reference block’s parameters but you cannot mask
the block or, if it is masked, edit the mask. Also, you cannot set callback
parameters for a reference block. If the link is to a subsystem, you can modify
the contents of the reference subsystem (see “Modifying a Linked Subsystem”
on page 5-31).

The library and reference blocks are linked by name; that is, the reference block
is linked to the specific block and library whose names are in effect at the time
the copy is made.

Working with Block Libraries

If Simulink is unable to find either the library block or the source library on
your MATLAB path when it attempts to update the reference block, the link
becomes unresolved. Simulink issues an error message and displays these
blocks using red dashed lines. The error message is

Failed to find block "source-block-name"
in library "source-library-name"
referenced by block
"reference-block-path".

The unresolved reference block is displayed like this (colored red).

i Bad Link I)

F.Teference Block Name

To fix a bad link, you must do one of the following:

¢ Delete the unlinked reference block and copy the library block back into your
model.

® Add the directory that contains the required library to the MATLAB path
and select Update Diagram from the Edit menu.

¢ Double-click the reference block. On the dialog box that appears, correct the
pathname and click Apply or Close.

Disabling Library Links

Simulink allows you to disable linked blocks in a model. Simulink ignores
disabled links when simulating a model. To disable a link, select the link,
choose Link options from the model window’s Edit or context menu, then
choose Disable link. To restore a disabled link, choose Restore link from the
Link Options menu.

Modifying a Linked Subsystem

Simulink allows you to modify subsystems that are library links. If your
modifications alter the structure of the subsystem, you must disable the link
from the reference block to the library block. If you attempt to modify the
structure of a subsystem link, Simulink prompts you to disable the link.
Examples of structural modifications include adding or deleting a block or line

5-31

5 Working with Blocks

5-32

or changing the number of ports on a block. Examples of nonstructural changes
include changes to parameter values that do not affect the structure of the
subsystem.

Propagating Link Modifications

Simulink allows a model to have active links with nonstructural but not
structural changes. If you restore a link that has structural changes, Simulink
prompts you to either propagate or discard the changes. If you choose to
propagate the changes, Simulink updates the library block with the changes
made in the reference block. If you choose to discard the changes, Simulink
replaces the modified reference block with the original library block. In either

case, the end result is that the reference block is an exact copy of the library
block.

If you restore a link with nonstructural changes, Simulink enables the link
without prompting you to propagate or discard the changes. If you want to
propagate or discard the changes at a later time, select the reference block,
choose Link options from the model window’s Edit or context menu, then
choose Propagate/Discard changes. If you want to view the nonstructural
parameter differences between a reference block and its corresponding library
block, choose View changes from the Link options menu.

Updating a Linked Block

Simulink updates out-of-date reference blocks in a model or library at these
times:

¢ When the model or library is loaded

¢ When you select Update Diagram from the Edit menu or run the simulation

¢ When you query the LinkStatus parameter of a block, using the get_param
command (see “Library Link Status” on page 5-34)

¢ When you use the find_system command

Updating Links to Reflect Block Path Changes

Library forwarding tables enable Simulink to update models to reflect changes
in the names or locations of the library blocks that they reference. For example,
suppose that you rename a block in a library. You can use a forwarding table

Working with Block Libraries

for that library to enable Simulink to update models that reference the block
under its old name to reference it under its new name.

Simulink allows you to associate a forwarding table with any library. The
forwarding table for a library specifies the old locations and new locations of
blocks that have moved within the library or to another library. You associate
a forwarding table with a library by setting its ForwardingTable parameter to
a cell array of two-element cell arrays, each of which specifies the old and new
path of a block that has moved. For example, the following command creates a
forwarding table and assigns it to a library named Lib1.

set_param('Lib1', 'ForwardingTable', {{'Lib1/A', 'Lib2/A'}
{'Lib1/B', 'Lib1/C'}});

The forwarding table specifies that block A has moved from Lib1 to Lib2. and
that block B is now named C. Suppose that you opensa model that contains
links to Lib1/A and Lib1/B. Simulink updates the link to Lib1/A to refer to
Lib2/A and the link to Lib1/B to refer to Lib1/C. The changes become
permanent when you subsequently save the model.

Breaking a Link to a Library Block

You can break the link between a reference block and its library block to cause
the reference block to become a simple copy of the library block, unlinked to the
library block. Changes to the library block no longer affect the block. Breaking
links to library blocks may enable you to transport a model as a stand-alone
model, without the libraries.

To break the link between a reference block and its library block, first disable
the block. Then select the block and choose Break Library Link from the Link
options menu. You can also break the link between a reference block and its
library block from the command line by changing the value of the LinkStatus
parameter to 'none' using this command:

set_param('refblock', 'LinkStatus', 'none')

You can save a system and break all links between reference blocks and library
blocks using this command:

save_system('sys', 'newname', 'BreakLinks')

5-33

5 Working with Blocks

5-34

Note Breaking library links in a model does not guarantee that you can run
the model stand-alone, especially if the model includes blocks from third-party
libraries or optional Simulink blocksets. It is possible that a library block
invokes functions supplied with the library and hence can run only if the
library is installed on the system running the model. Further, breaking a link
can cause a model to fail when you install a new version of the library on a
system. For example, suppose a block invokes a function that is supplied with
the library. Now suppose that a new version of the library eliminates the
function. Running a model with an unlinked copy of the block results in
invocation of a now nonexistent function, causing the simulation to fail. To
avoid such problems, you should generally avoid breaking links to third-party
libraries and optional Simulink blocksets.

Finding the Library Block for a Reference Block

To find the source library and block linked to a reference block, select the
reference block, then choose Go To Library Link from the Link options
submenu of the model window’s Edit or context menu. If the library is open,
Simulink selects and highlights the library block and makes the source library
the active window. If the library is not open, Simulink opens it and selects the
library block.

Library Link Status

All blocks have a LinkStatus parameter that indicates whether the block is a
reference block. The parameter can have these values.

Status Description
none Block is not a reference block.
resolved Link is resolved.

unresolved Link is unresolved.

Working with Block Libraries

Status

Description

implicit

inactive

restore

propagate

Block resides in library block and is itself not a link to a
library block. For example, suppose that A is a link to a
subsystem in a library that contains a Gain block. Further,
suppose that you open A and select the Gain block. Then,
get_param(gcb, 'LinkStatus') returns implicit.

Link is disabled.

Restores a broken link to a library block and discards any
changes made to the local copy of the library block. For
example, set_param(gcb, 'LinkStatus', 'restore') replaces
the selected block with a link to a library block of the same
type, discarding any changes in the local copy of the library
block. Note that this parameter is a “write-only” parameter,
i.e., it is usable only with set_param. You cannot use
get_param to get it.

Restores a broken link to a library block and propagates
any changes made to the local copy to the library.

Displaying Library Links

Simulink optionally displays an arrow in the bottom left corner of each block

that represents a library link in a model.

/ library link

1
i > TR
U A =05
Sine Wave Discrete Display
Transfar Fon

This arrow allows you to tell at a glance whether a block represents a link to a

[with initial states)

library block or a local instance of a block. To enable display of library links,

select Library Link Display from the model window’s Format menu and then

5-35

5 Working with Blocks

select either User (displays only links to user libraries) or All (displays all
links).

The color of the link arrow indicates the status of the link.

Color Status

Black Active link

Grey Inactive link

Red Active and modified

Getting Information About Library Blocks

Use the 1libinfo command to get information about reference blocks in a
system

Browsing Block Libraries

The Library Browser lets you quickly locate and copy library blocks into a
model. To display the Library Browser, click the Library Browser button in
the toolbar of the MATLAB desktop or Simulink model window or enter
simulink at the MATLAB command line.

Note The Library Browser is available only on Microsoft Windows platforms.

5-36

Working with Block Libraries

The Library Browser contains three panes.

[Fsimulink Library Browser i im] 4

File Edit Wiew Help

DS =

Commonly Used Blocks: simulink/Commonly
Uszed Blocks

Documentation Pane

A

= Tl simulink.
----- 2] Commonly Used Blocks
.....] Continuous

----- 2| Discontinuities Coninous

----- | Discrete

..... 2+ Logic and Bit Operations /\n\ Discontinuities

----- 2+ Lookup Tables

..... 2] Math Operations f"‘\. Discrete

----- 2] Model Werification

----- 2| Model-wide Utilidies a4 ,% Logic and Bit Operations
----- 2] Ports & Subsystems =

..... 2 signal sttributes

_____] signal Routing y=fluf| Lookup Tables

.....] sirks +

_____ #] Sources i I ath Operations

----- 2 User-Defined Functions —

- 2 Additional Math & Discrete @ Model Verification
[]---El Real-Time Warkshop @
- W Simulink Extras Mise | Modelwide Utilties
..... B stateflow
- Il'w; Ports & Subsystems LI
Ready A
Tree Pane Contents Pane

The tree pane displays all the block libraries installed on your system. The
contents pane displays the blocks that reside in the library currently selected
in the tree pane. The documentation pane displays documentation for the block
selected in the contents pane.

You can locate blocks either by navigating the Library Browser’s library tree
or by using the Library Browser’s search facility.

5-37

5 Working with Blocks

5-38

Navigating the Library Tree

The library tree displays a list of all the block libraries installed on the system.
You can view or hide the contents of libraries by expanding or collapsing the
tree using the mouse or keyboard. To expand/collapse the tree, click the +/-
buttons next to library entries or select an entry and press the +/- or right/left
arrow key on your keyboard. Use the up/down arrow keys to move up or down
the tree.

Searching Libraries

To find a particular block, enter the block’s name in the edit field next to the
Library Browser’s Find button, then click the Find button.

Opening a Library

To open a library, right-click the library’s entry in the browser. Simulink
displays an Open Library button. Select the Open Library button to open the
library.

Creating and Opening Models

To create a model, select the New button on the Library Browser’s toolbar. To
open an existing model, select the Open button on the toolbar.

Copying Blocks

To copy a block from the Library Browser into a model, select the block in the
browser, drag the selected block into the model window, and drop it where you
want to create the copy.

Displaying Help on a Block
To display help on a block, right-click the block in the Library Browser and
select the button that subsequently pops up.

Pinning the Library Browser

To keep the Library Browser above all other windows on your desktop, select
the PushPin button on the browser’s toolbar.

Adding Libraries to the Library Browser

If you want a library that you have created to appear in the Library Browser,
you must create an slblocks.m file that describes the library in the directory

Working with Block Libraries

that contains it. The easiest way to create an slblocks.m file is to use an
existing slblocks.m file as a template. You can find all existing slblocks.m
files on your system by typing

which('slblocks.m', '-all')

at the MATLAB command prompt. Copy any of the displayed files to your
library’s directory. Then open the copy, edit it, following the instructions
included in the file, and save the result. Finally, add your library’s directory to
the MATLAB path, if necessary. The next time you open the Library Browser,
your library should appear among the libraries displayed in the browser.

5-39

5 Working with Blocks

Accessing Block Data During Simulation

5-40

Simulink provides an application programming interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line.

Note You can use this interface even when the model is paused or is running
or stopped in the debugger.

To obtain the interface for a particular block, select the block and execute
br = get_param(gcb, 'RuntimeObject');

while the model containing the block is running. The syntax for accessing the
value and attributes of the run-time data is:

get(br.InputPort(portldx))
get(br.OutputPort(portlIdx))
get(br.Dwork (dworkIdx))
get(br.ContStates(stateIdx))
get(br.RuntimePrm(prmlIdx))

For example, to display the signal values at the first input port of a block when
stopped in the debugger, you could type:

br = get_param(gcb, 'RuntimeObject');
br.InputPort(1).Data

The execution interface also supports an event-listener mechanism that allows
you to listen for specific events during model simulation. In particular, you can
request that Simulink throw events whenever a specific method (e.g., Outputs,
Derivatives, or Update) of a given block is executed during a simulation. For
instance, to determine when block a in model b executes its Outputs method,
execute the following commands after you have started simulating the model:

br = get_param('b/a', 'RuntimeObject');
add_exec_event_listener('b/a', 'PostOutputs','disp(''here'')")
br.ExecutionEvents = 1;

Accessing Block Data During Simulation

Simulink now displays here after executing the output method of block b/a.

Note The final release of R14 will provide mechanisms for adding events
before a simulation starts.

The add_exec_event_listener command supports the following events:

® PreQutputs
® PostOutputs
® PreUpdate

® PostUpdate
® PreDerivs

® PostDerivs

The listener can be any M callback you choose to register. The callback can also
be a function handle for a function that accepts two input arguments:
¢ the block run-time object

i.e., the object returned by get_param(gcb, 'RuntimeObject"')

* an event data object

Note You must install the events at the start of each simulation of a model,
even in the same Simulink session.

5-41

5 Working with Blocks

5-42

Working with Signals

This section describes how to create and use Simulink signals.

Signal Basics (p. 6-2) Explores key signal concepts, including signal data types,
signal buses, virtual signals, signal dimensions, and
signal properties.

Determining Output Signal Explains the rules that determine the dimensions of
Dimensions (p. 6-12) signals that blocks output.

The Signal & Scope Manager (p. 6-16) How to use the Signal & Scope Manager to create signals
and displays for viewing signals during simulation.

The Signal Selector (p. 6-23) How to use the Signal Selector to connect signal
generators to block inputs and block outputs to signal
viewers.

Logging Signals (p. 6-27) How to save signal values to the MATLAB workspace

during simulation.

Signal Properties Dialog Box (p. 6-30) How to use the Signal Properties dialog box to set signal
properties.

Working with Test Points (p. 6-35) How to ensure the visibility of a model’s signals.
Displaying Signal Properties (p. 6-37) How to display signal properties on a block diagram.

Working with Signal Groups (p. 6-41) How to create and use interchangeable groups of signals,
for example, to test a model.

Bus Editor (p. 6-55) How to use the Bus Editor to create signal bus objects.

6 Working with Signals

6-2

Signal Basics

This section provides an overview of Simulink signals and explains how to
specify, display, and check the validity of signal connections.

About Signals

Simulink defines signals as the outputs of dynamic systems represented by
blocks in a Simulink diagram and by the diagram itself. The lines in a block
diagram represent mathematical relationships among the signals defined by
the block diagram. For example, a line connecting the output of block A to the
input of block B indicates that the signal output by B depends on the signal
output by A.

Note It is tempting but misleading to think of Simulink signals as traveling
along the lines that connect blocks the way electrical signals travel along a
telephone wire. This analogy is misleading because it suggests that a block
diagram represents physical connections between blocks, which is not the
case. Simulink signals are mathematical, not physical, entities and the lines
in a block diagram represent mathematical, not physical, relationships among
signals.

Creating Signals

You can create signals by creating source blocks in your model. For example,
you can create a signal that varies sinusoidally with time by dragging an
instance of the Sine block from the Simulink Sources library into the model.
See “Sources” in the online “Block Libraries” reference for information on
blocks that you can use to create signals in a model. You can also use the Signal
& Scope Manager to create signals in your model without using blocks. See
“The Signal & Scope Manager” on page 6-16 for more information.

Signal Labels

A signal label is text that appears next to the line that represents a signal that
has a name. The signal label displays the signal’s name. In addition, if the
signal is a virtual signal (see “Virtual Signals” on page 6-4) and its Show
propagated signals property is on (see “Show propagated signals” on

Signal Basics

page 6-31), the label displays the names of the signals that make up the virtual
signal.

Simulink creates a label for a signal when you assign it a name in the Signal
Properties dialog box (see “Signal Properties Dialog Box” on page 6-30). You
can change the signal’s name by editing its label on the block diagram. To edit
the label, left-click the label. Simulink replaces the label with an edit field. Edit
the name in the edit field, the press Enter or click outside the label to confirm
the change.

Displaying Signal Values

As with creating signals, you can use either blocks or the Signal & Scope
Manager to display the values of signals during a simulation. For example, you
can use either the Scope block or the Signal & Scope Manager to graph
time-varying signals on an oscilloscope-like display during simulation. See
“Sinks” in the online “Block Libraries” reference for information on blocks that
you can use to display signals in a model.

Signal Data Types

Data type refers to the format used to represent signal values internally. The
data type of Simulink signals is double by default. However, you can create
signals of other data types. Simulink supports the same range of data types as
MATLAB. See “Working with Data Types” on page 7-2 for more information.

Signal Dimensions

Simulink blocks can output one- or two-dimensional signals. A
one-dimensional (1-D) signal consists of a stream of one-dimensional arrays
output at a frequency of one array (vector) per simulation time step. A
two-dimensional (2-D) signal consists of a stream of two-dimensional arrays
emitted at a frequency of one 2-D array (matrix) per block sample time. The
Simulink user interface and documentation generally refer to 1-D signals as
vectors and 2-D signals as matrices. A one-element array is frequently referred
to as a scalar. A row vector is a 2-D array that has one row. A column vector is
a 2-D array that has one column.

Simulink blocks vary in the dimensionality of the signals they can accept or
output during simulation. Some blocks can accept or output signals of any
dimensions. Some can accept or output only scalar or vector signals. To

6-3

6 Working with Signals

determine the signal dimensionality of a particular block, see the block’s
description in “Simulink Blocks” in the online Simulink Help. See
“Determining Output Signal Dimensions” on page 6-12 for information on
what determines the dimensions of output signals for blocks that can output
nonscalar signals.

Complex Signals

The values of Simulink signals can be complex numbers. A signal whose values
are complex numbers is called a complex signal. You can introduce a
complex-valued signal into a model in the following ways:

¢ Load complex-valued signal data from the MATLAB workspace into the
model via a root-level inport.

¢ Create a Constant block in your model and set its value to a complex number.

¢ Create real signals corresponding to the real and imaginary parts of a
complex signal, then combine the parts into a complex signal, using the
Real-Imag to Complex conversion block.

You can manipulate complex signals via blocks that accept them. If you are not
sure whether a block accepts complex signals, see the documentation for the
block in the “Simulink Blocks” section of the Simulink online documentation.

Virtual Signals

A virtual signal is a signal that represents another signal graphically. Some
blocks, such as Bus Creator, Inport, and Outport blocks (see “Virtual Blocks”
on page 5-2), generate virtual signals either exclusively or optionally (see
“Virtual Versus Nonvirtual Buses” on page 6-7). Virtual signals are purely
graphical entities. They have no mathematical or physical significance.
Simulink ignores them when simulating a model.

Whenever you run or update a model, Simulink determines the nonvirtual
signal(s) represented by the model’s virtual signal(s), using a procedure known
as signal propagation. When running the model, Simulink uses the
corresponding nonvirtual signal(s), determined via signal propagation, to drive
the blocks to which the virtual signals are connected. Consider, for example,
the following model.

6-4

Signal Basics

1 2 L 4]
=1 sl ’{ =4 >
cl =1 Di=playl
=3
2 >
£ e .+
=7 =1 =5
oz =FE Di=playZ

The signals driving Gain blocks G1 and G2 are virtual signals corresponding to
signals s2 and s1, respectively. Simulink determines this automatically
whenever you update or simulate the model.

The Show propagated signals option (see “Signal Properties Dialog Box” on
page 6-30) displays the nonvirtual signals represented by virtual signals in the
labels of the virtual signals.

1 : [4]
=1 <52y ’{ =4 *
cl =1 Di=playl
s34g1, 52%
2 -
Z gl .+
=7 =1 =5
oz =FE Di=playZ

Note Virtual signals can represent virtual as well as nonvirtual signals. For
example, you can use a Bus Creator block to combine multiple virtual and
nonvirtual signals into a single virtual signal. If during signal propagation
Simulink determines that a component of a virtual signal is itself virtual,
Simulink determines its nonvirtual components using signal propagation.
This process continues until Simulink has determined all nonvirtual
components of a virtual signal.

6-5

6 Working with Signals

6-6

Control Signals

A control signal is a signal used by one block to initiate execution of another
block, e.g., a function-call or action subsystem. When you update or start
simulation of a block diagram, Simulink uses a dash-dot pattern to redraw
lines representing the diagram’s control signals as illustrated in the following
example.

Control signal

it =0)

Signal Buses

A bus is a composite signal comprising a set of signals represented graphically
by a bundle of lines. It is analogous to a bundle of wires held together by tie
wraps. The components of a bus can have different data types and can
themselves be composite signals (i.e., buses or muxed signals). You can use Bus
Creator and Inport blocks to create signal buses and Bus Selector blocks to
access a bus’s components.

Signal bus

A Y |

=4

1

=1 / 452>
cl [ch § Displayl
z

=2

[F:4

h

s3<s1, si>

=5

FE Displayi

b4
L)

h

=1

Selecting a bus and then Signal Dimensions from the model editor’s Format
menu displays the number of signal components carried by the bus.

Signal Basics

Virtual Versus Nonvirtual Buses

Buses may be either virtual or nonvirtual. During simulation, blocks connected
to a virtual bus read their inputs from memory allocated to the component
signals, which may reside in noncontiguous areas of memory. By contrast,
blocks connected to a nonvirtual bus read their inputs from a copy of the
component signals maintained by Simulink in a contiguous area of memory
allocated to the bus.

Some Simulink features, such as model referencing (see “Referencing Models”
on page 4-53), require use of nonvirtual signals. Others require virtual buses.
Nonvirtual buses also facilitate code generation by enabling buses to be
represented by data structures. On the other hand, nonvirtual buses can save
memory where nonvirtual buses are not required.

The Bus Creator and Inport blocks output virtual buses by default. To cause
them to output a nonvirtual bus, select the Output as structure option on their
parameter dialog boxes. You can also use the Signal Conversion block to
convert nonvirtual to virtual buses, and vice versa.

Bus-Capable Blocks

A bus-capable block is a block through which both virtual and nonvirtual buses
can pass. All virtual blocks are bus capable. Further, the following nonvirtual
blocks are also bus-capable:

® Memory

® Merge

® Switch

® Multiport Switch

¢ Rate Transition

® Unit Delay

® Zero-Order Hold

Some bus-capable blocks impose constraints on bus propagation through them.
See the documentation for the individual blocks for more information.

Connecting Buses to Subsystem Inports

Generally, an Inport block is a virtual block and hence accepts a bus as input.
However, an Inport block is nonvirtual if it resides in a conditionally executed
or atomic subsystem and it or any of its components is directly connected to an

6-7

6 Working with Signals

output of the subsystem. In such a case, the Inport block can accept a bus only
if its components have the same data type. If the components are of differing
data types, attempting to simulate the model causes Simulink to halt the
simulation and display an error message. You can avoid this problem, without
changing the semantics of your model, by inserting a Signal Conversion block
between the Inport block and the Outport block to which it was originally
connected.

Consider, for example, the following model.

double
a double

] nonvirtual Outt

. Atomic ~ Iﬁ
Subsystem R %

in1g

U[
k J
E
[s]

in1e

nonvirtual

wirtual

In this model, the Inport labeled nonvirtual is nonvirtual because it resides in
an atomic subsystem and one of its components (labeled a) is directly connected
to one of the subsystem’s outputs. Further, the bus connected to the
subsystem’s inputs has components of differing data types. As a result,
Simulink cannot simulate this model.

6-8

Signal Basics

Inserting a Signal Conversion block with the bus copy option selected breaks
the direct connection to the subsystem’s output and hence enables Simulink to
simulate the model.

nonvirtual

wirtual

CBlock Parameters: Signal Conversion 2=l

—Signal Conversion

Convert a signal to a new type without altering signal values.

a)] The ‘Contiguous copy' option creates a contiguous segment of memaory ta store a
copy of an input signal when specifying signal storage attributes for a collection of
digcontiguous signals. 'With optimizations enabled, the copy does not occur if the
operation is superfluous.

b) The 'Bus copy' option outputs a copy of the incoming buz. This iz uzeful for use with
non-virtual inports in non-virtual subsystems.

] The Virtual bus' option converts the input bus to a virtual bus.

d] The "Monvirtual bus' option converts the input bus to a non-virtual bus.

=
F

Dusu: S -

I~ | Overnide optimizations and always copy signal

Ok I Lancel | Help | Apply |

Connecting Buses to Model Inports

If you want a root level Inport of a model to be able to accept a bus signal, you
must set the Inport’s bus object parameter to the name of a bus object that
defines the type of bus that the Inport accepts. See “Working with Data
Objects” on page 7-10 and Simulink.Bus class for more information.

Checking Signal Connections

Many Simulink blocks have limitations on the types of signals they can accept.
Before simulating a model, Simulink checks all blocks to ensure that they can
accommodate the types of signals output by the ports to which they are

6-9

6 Working with Signals

connected. If any incompatibilities exist, Simulink reports an error and
terminates the simulation. To detect such errors before running a simulation,
choose Update Diagram from the Simulink Edit menu. Simulink reports any
invalid connections found in the process of updating the diagram.

Signal Glossary

The following table summarizes the terminology used to describe signals in the
Simulink user interface and documentation.

Term Meaning
Complex signal Signal whose values are complex numbers.
Data type Format used to represent signal values internally.

See “Working with Data Types” on page 7-2 for
more information.

Matrix Two-dimensional signal array.

Real signal Signal whose values are real (as opposed to
complex) numbers.

Scalar One-element array, i.e., a one-element, 1-D or 2-D
array.
Signal bus A composite signal made up of other signals,

including other buses. You can use Bus Creator,
Mux, and Inport blocks to create signal buses.

Signal propagation Process used by Simulink to determine attributes of
signals and blocks, such as data types, labels,
sample time, dimensionality, and so on, that are
determined by connectivity.

Size Number of elements that a signal contains. The size
of a matrix (2-D) signal is generally expressed as
M-by-N where M is the number of columns and N is
the number of rows making up the signal.

6-10

Signal Basics

Term Meaning

Test point A signal that must be accessible during simulation
(see “Signal Properties Dialog Box” on page 6-30).

Vector One-dimensional signal array.

Virtual signal

Width

Signal that represents another signal or set of
signals.

Size of a vector signal.

6-11

6 Working with Signals

6-12

Determining Output Signal Dimensions

If a block can emit nonscalar signals, the dimensions of the signals that the
block outputs depend on the block’s parameters, if the block is a source block;
otherwise, the output dimensions depend on the dimensions of the block’s input
and parameters.

Determining the Output Dimensions of Source Blocks

A source block is a block that has no inputs. Examples of source blocks include
the Constant block and the Sine Wave block. See the “Sources Library” table in
the online Simulink Help for a complete listing of Simulink source blocks. The
output dimensions of a source block are the same as those of its output value
parameters if the block’s Interpret Vector Parameters as 1-D parameter is off
(i.e., not selected in the block’s parameter dialog box). If the Interpret Vector
Parameters as 1-D parameter is on, the output dimensions equal the output
value parameter dimensions unless the parameter dimensions are N-by-1 or
1-by-N. In the latter case, the block outputs a vector signal of width N.

As an example of how a source block’s output value parameter(s) and Interpret
Vector Parameters as 1-D parameter determine the dimensionality of its
output, consider the Constant block. This block outputs a constant signal equal
to its Constant value parameter. The following table illustrates how the
dimensionality of the Constant value parameter and the setting of the
Interpret Vector Parameters as 1-D parameter determine the dimensionality
of the block’s output.

Constant Value Interpret Vector Output
Parameters as 1-D

2-D scalar off 2-D scalar

2-D scalar on 1-D scalar

1-by-N matrix off 1-by-N matrix

1-by-N matrix on N-element vector

N-by-1 matrix off N-by-1 matrix

N-by-1 matrix on N-element vector

Determining Output Signal Dimensions

Constant Value Interpret Vector Output
Parameters as 1-D

M-by-N matrix off M-by-N matrix

M-by-N matrix on M-by-N matrix

Simulink source blocks allow you to specify the dimensions of the signals that
they output. You can therefore use them to introduce signals of various
dimensions into your model.

Determining the Output Dimensions of Nonsource Blocks

If a block has inputs, the dimensions of its outputs are, after scalar expansion,
the same as those of its inputs. (All inputs must have the same dimensions, as
discussed in the next section.)

Signal and Parameter Dimension Rules

When creating a Simulink model, you must observe the following rules
regarding signal and parameter dimensions.

Input Signal Dimension Rule
All nonscalar inputs to a block must have the same dimensions.

A block can have a mix of scalar and nonscalar inputs as long as all the
nonscalar inputs have the same dimensions. Simulink expands the scalar
inputs to have the same dimensions as the nonscalar inputs (see “Scalar
Expansion of Inputs” on page 6-14), thus preserving the general rule.

Block Parameter Dimension Rule

In general, a block’s parameters must have the same dimensions as the
corresponding inputs.

Two seeming exceptions exist to this general rule:

® A block can have scalar parameters corresponding to nonscalar inputs. In
this case, Simulink expands a scalar parameter to have the same dimensions
as the corresponding input (see “Scalar Expansion of Parameters” on
page 6-15), thus preserving the general rule.

6-13

6 Working with Signals

¢ If an input is a vector, the corresponding parameter can be either an N-by-1
or a 1-by-N matrix. In this case, Simulink applies the N matrix elements to
the corresponding elements of the input vector. This exception allows use of
MATLAB row or column vectors, which are actually 1-by-N or N-by-1
matrices, respectively, to specify parameters that apply to vector inputs.

Vector or Matrix Input Conversion Rules

Simulink converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

¢ If a vector signal is connected to an input that requires a matrix, Simulink
converts the vector to a one-row or one-column matrix.

¢ If a one-column or one-row matrix is connected to an input that requires a
vector, Simulink converts the matrix to a vector.

e If the inputs to a block consist of a mixture of vectors and matrices and the
matrix inputs all have one column or one row, Simulink converts the vectors
to matrices having one column or one row, respectively.

Note You can configure Simulink to display a warning or error message if a
vector or matrix conversion occurs during a simulation. See “Vector/matrix
block input conversion” on page 10-54 for more information.

Scalar Expansion of Inputs and Parameters

Scalar expansion is the conversion of a scalar value into a nonscalar array of
the same dimensions. Many Simulink blocks support scalar expansion of
inputs and parameters. Block descriptions in the “Simulink Blocks” section in
the online Simulink Help indicate whether Simulink applies scalar expansion
to a block’s inputs and parameters.

Scalar Expansion of Inputs

Scalar expansion of inputs refers to the expansion of scalar inputs to match the
dimensions of other nonscalar inputs or nonscalar parameters.When the input
to a block is a mix of scalar and nonscalar signals, Simulink expands the scalar
inputs into nonscalar signals having the same dimensions as the other

6-14

Determining Output Signal Dimensions

nonscalar inputs. The elements of an expanded signal equal the value of the
scalar from which the signal was expanded.

The following model illustrates scalar expansion of inputs. This model adds
scalar and vector inputs. The input from block Constant1 is scalar expanded to
match the size of the vector input from the Constant block. The input is
expanded to the vector [3 3 3].

[f—sfs
[4 5 §] [

Constant

.—“ +
- Scope

Constanti

Sum

When a block’s output is a function of a parameter and the parameter is
nonscalar, Simulink expands a scalar input to match the dimensions of the
parameter. For example, Simulink expands a scalar input to a Gain block to
match the dimensions of a nonscalar gain parameter.

Scalar Expansion of Parameters

If a block has a nonscalar input and a corresponding parameter is a scalar,
Simulink expands the scalar parameter to have the same number of elements
as the input. Each element of the expanded parameter equals the value of the
original scalar. Simulink then applies each element of the expanded parameter
to the corresponding input element.

This example shows that a scalar parameter (the Gain) is expanded to a vector
of identically valued elements to match the size of the block input, a
three-element vector.

[z3 :|3 ELL) ;:|:|

Canstant :
anstan &ain Soope

6-15

6 Working with Signals

The Signal & Scope Manager

The Signal & Scope Manager lets you globally manage signal generators and
viewers.

Note The Signal & Scope Manager requires that you start MATLAB with
Java enabled (the default).

To display the Signal & Scope Manager, select Signal & Scope Manager from
the model editor’s Tools or context menu. The Signal & Scope Manager

appears.
«): Signal & Scope Manager : vdp i =101 %]
rTypes - Generatorsiiewers in model
Generators Generators Wiewers |
W Simulink - El
EE o Mame | Type | #in |
ﬂlCommunlcatmns El
W Signal Processing
Wiewers ll

B Simulink
B Comrmunications ‘

W Signal Processing

rSignals connected to GeneratorMiewer—————————————————

Fort Connected signals

Attach tomodel == |

Help Close

6-16

The Signal & Scope Manager

The Signal & Scope Manager contains the following groups of controls.

Generator and Viewer Types

This group of controls lets you create signal generators and viewers of various
types and associate them with your model.

r Types

Generators

B Simulink

B Comrmunications
W Signal Processing
Wiewers

B Simulink
B Comrmunications

W Signal Processing

Attach tomodel == |

The tree control displays a list of the types of generators and viewers installed
on your system. The tree’s second-level nodes group the generators and viewers
by the products that provides them (i.e., Simulink and any MathWorks
blocksets installed on your system). Expand a product’s nodes to see the
generators and viewers that it provides.

For information on the attributes and usage of the generators and viewers, see
the documentation for the identically named source (i.e., generator) and sink
(i.e., viewer) blocks in the product’s documentation. For example, for
information on the generators and viewers provided with Simulink, see the
documentation for the corresponding blocks in the Simulink Sources and Sinks
libraries.

6-17

6 Working with Signals

Note The Scope viewer, unlike the Scope block, cannot log signals to the
MATLAB workspace. To log a signal displayed on the Scope viewer, select the
signal logging option on the signal’s Signal Properties dialog box (see
“Logging Signals” on page 6-27).

To create an instance of a generator or viewer and associate with the currently
selected model, select its type in the type list and then click the Attach to
model button beneath the list.

Generator and Viewer Objects

This group of controls lets you edit the sources and viewers already associated
with your model. It contains the following controls.

Generators

The Generators pane displays a table listing the generators associated with
your model.

- Generatorsiviewers in model
Generators | iewers |

Mame Type
s
q 0 Constant ll

Each row corresponds to a generator. The columns specify each generator’s
name and type.

6-18

The Signal & Scope Manager

Viewers
The Viewers pane displays a table listing the viewers associated with your
model.

- Generatorsiviewers in model
Generators Viewers |

® v Graph

1 [|

Temperature Scope E Scope 1
LUtility Scope & Floating Scope |1

Each row corresponds to a viewer. The columns specify each viewer’s name,
type, and number of inputs. If a viewer accepts a variable number of inputs, the
#in entry for the viewer contains a pull-down list that displays the range of
inputs that the viewer can accept. To change the number of inputs accepted by
the viewer, pull down the list and select the desired value.

6-19

6 Working with Signals

Edit Buttons

Selecting the table entry for a generator or viewer enables the following
buttons.

Button Description

Opens the parameter dialog box for the selected generator or
viewer. The parameter dialog box enables you to view and
change the current settings of the selected object’s parameters.
See the documentation for the corresponding source or sink
block for more information.

- Opens the Signal Selector for the selected generator or viewer.
The Signal Selector lets you connect signal generators to your
model’s inputs and your model’s signals to its signal viewers.

Note You can also use port or signal context menus to connect
signals to input ports and output ports to viewers. For example,
to connect a signal to a new viewer, select Create Viewer from
the signal or output port’s context menu, then the type of
viewer. To connect a signal to an existing viewer, select
Connect to Viewer, then the axis to display the signal.
Similarly, to connect a new signal generator to a block input
port, select Create Generator from the input port’s context
menu, then the type of generator.

X Deletes the selected generator or viewer.

Edit Menu

Selecting a row in the generator or viewer table and pressing the right button
on your mouse displays an edit menu containing entries corresponding to the
edit buttons described in the preceding section. It also displays a Rename
command for renaming the selected object (e.g., a viewer). Selecting this
command causes Simulink to replace the selected object’s name with an edit
control. Use the edit control to rename the object.

6-20

The Signal & Scope Manager

Note You can also rename a signal generator on a model’s block diagram. To
do this, select Edit Source Name from the context menu of an input port to

which the signal generator is connected. Simulink replaces the source’s name
with an edit field containing the source’s name. Edit the name and then click
outside the field or press Enter to confirm your changes.

Signals connected to Generator/Viewer

This table lists the signals connected to the generator or viewer selected in the
Generator/Viewers control panel of the Signal & Scope Manager.

- Generatorsiviewers in model

Generatars | Wigwers |

MName

Type

& Sine Wave
® Constant

B

=

rSignals connected to Generatorfiewer

Qutput

Conpseted signals

1

Sum:2

A

e

If the selected object is a signal generator, the table lists the block input ports
to which each of the generator’s outputs is connected. For each connection, the
first column of the table specifies the number of the corresponding generator
output. The second column specifies the number of the corresponding input
port and the name of the block that owns the input port. For example, in the
preceding figure, the Signals connected to Generator/Viewer table shows
that the first (and only output) of the selected Constant generator is connected
to the second input port of the block named Sum.

If the selected object is a signal viewer, the Signals connected to
Generator/Viewer table lists the signals connected to the selected viewer. For
each connection, the first column of the table specifies the number of the

6-21

6 Working with Signals

corresponding viewer axis. The second column specifies the number of the
corresponding output port and the name of the block that owns the output port.

For example, in the next figure, the Signals connected to Generator/Viewer
table shows that the first axis of the selected signal viewer is connected to the
first output port of the block named Sum.

- Generatorsiviewers in model
Generators Viewers |

MName

& scope

Force Scope

X | B

rSignals connected to Generatorfiewer

Axps Connected signals
1 Surmn:l

Connection Menu

Selecting a connection in the Signals connected to Generator/Viewer table
and pressing the right button on your mouse displays a context menu. To
highlight the block to which the object is connected, select Hilight signal in
model from the menu. To open the Signal Selector, select Edit Signal
Connections from the model.

6-22

The Signal Selector

The Signal Selector

The Signal Selector allows you to connect a signal or viewer object (see “The
Signal & Scope Manager” on page 6-16) or the Floating Scope to block inputs
and outputs. It appears when you click the signal selection button for a signal
or viewer object in the Signal & Scope Manager or on the toolbar of the Floating
Scope’s window.

«): Signal Selector : Scope ;Iglll
Select signals for object 'untitled/Scope’ |Axes1 j
Model hierarchy)ﬁl%l List contents: |4l available signals j I_E!a *—ﬁ”EEEE =
E|— ntitled & Cantroller: 1

| Controller Contraller: 2
' Integratar
 Sum

Show signal names matching:

Help | Close |

The Signal Selector that appears when you click the signal selection button
applies only to the currently selected signal or viewer object (or the Floating
Scope). If you want to connect blocks to another signal or viewer object, you
must select the object in the Signal & Scope Manager and launch another
instance of the Signal Selector. The object used to launch a particular instance
of the Signal Selector is called that instance’s owner.

The Signal Selector includes the following control panels.

Port/Axis Selector

This list box allows you to select the owner output port (in the case of signal
generators) or display axis (in the case of signal viewers) to which you want to
connect blocks in your model.

Select signals for object 'untited1/Scopesvl’ |REEER

6-23

6 Working with Signals

6-24

The list box is enabled only if the signal generator has multiple outputs or the
signal viewer has multiple axes.

Model Hierarchy

This tree-structured list lets you select any subsystem in your model.

Model hierarchy % |5t | | «—— Look Under Mask

& engine t

y Combustion

y Compression

yDrag Toroque

2] Throttle & Manifold
MVehicle Dynamics
yvalve timing

Library Links

4 |

Selecting a subsystem causes the adjacent port list panel to display the ports
available for connection in the selected subsystem. To display subsystems
included as library links in your model, click the Library Links button at the
top of the Model hierarchy panel. To display subsystems contained by masked
subsystems, click the Look Under Masks button at the top of the panel.

Inputs/Signals List

The contents of this panel displays input ports available for connection to the
Signal Selector’s owner if the owner is a signal generator or signals available
for connection to the owner if the owner is a signal viewer.

The Signal Selector

If the Signal Selector’s owner is a signal generator, the inputs/signals list by
default lists each input port in the system selected in the model hierarchy tree
that is either unconnected or connected to a signal generator.

V¥ Product: 2

|
|
|
|
Show signal names matching: I
H

Aa Pmoduct
_____________________)

The label for each entry indicates the name of the block of which the port is an
input. If the block has more than one input, the label indicates the number of
the displayed port. A greyed label indicates that the port is connected to a
signal generator other than the Signal Selectors’ owner. Checking the checkbox
next to a port’s entry in the list connects the Signal Selector’s owner to the port,
replacing, if necessary, the signal generator previously connected to the port.

To display more information on each signal, click the Detailed view button at
the top of the pane. The detailed view shows the path and data type of each

signal and whether the signal is a test point. The controls at the top and bottom
of the panel let you restrict the amount of information shown in the ports list.

¢ To show named signals only, select Named signals only from the List
contents control at the top of the pane.

® To show test point signals only, select Test point signals only from the
List contents control.

® To show only signals whose signals match a specified string of characters,
enter the characters in the Show signals matching control at the bottom of
the Signals pane and press the Enter key.

® To show the selected types of signals for all subsystems below the currently
selected subsystem in the model hierarchy, click the Current and Below
button at the top of the Signals pane.

6-25

6 Working with Signals

To select or deselect a signal in the Signals pane, click its entry or use the
arrow keys to move the selection highlight to the signal entry and press the
Enter key. You can also move the selection highlight to a signal entry by typing
the first few characters of its name (enough to uniquely identify it).

Note You can continue to select and deselect signals on the block diagram
with the Signal Selector open. For example, shift-clicking a line in the block
diagram adds the corresponding signal to the set of signals that you
previously selected with the Signal Selector. Simulink updates the Signal
Selector to reflect signal selection changes you have made on the block
diagram. However, the changes do not appear until you select the Signal
Selector window itself.

6-26

logging Signals

Logging Signals

Logging signals refers to the process of saving signal values to the MATLAB
workspace during simulation for later retrieval and postprocessing. Simulink
allows you to log a signal either by connecting the signal to a To Workspace or
root-level Inport block or by setting the signal’s signal logging properties. The
first method allows you to document in the diagram itself the workspace
variables used to store signal data. The second method reduces diagram clutter
by eliminating the need to use blocks to log signals. Either method allows you
to specify the names of the workspace variables used to save signal data and to
limit the amount of data logged for a particular signal.

See the documentation for the To Workspace and Inport blocks for information
on using these blocks to log and retrieve signal data. The remainder of this
section explains how to use signal properties to log and access signal data.

Enabling Signal Logging
To enable signal logging for a signal, check the Log signal data option on the

signal’s Signal Properties dialog box (see “Signal Properties Dialog Box” on
page 6-30).

Note Simulink does not support signal logging for nonvirtual buses. If you
enable signal logging for a nonvirtual bus, Simulink displays an error message
when you simulate the model.

Specifying a Logging Name

You can assign a name, called the logging name, to the object used to log data
for a signal during simulation. If the signal to be logged does not have a name
or is an element of a composite signal that has another element of the same
name, you must specify a unique log name for the signal. To specify a log name
for a signal, select Custom from the Logging name list on the signal’s Signal
Properties dialog box and enter the custom name in the adjacent text field. If
a signal has a name you do not need to specify a logging name for the signal,
Simulink uses the signal’s name as its logging name.

6-27

6 Working with Signals

6-28

Limiting the Data Logged for a Signal

The Data panel of the Signal Properties dialog box lets you limit the amount
of data logged for a signal. For example, you can specify the maximum amount
of data to be logged for a signal or a decimation factor that causes Simulink to
skip a specified number of time steps before logging a signal value. See “Data”
on page 6-33 for more information.

Logging Referenced Model Signals

To log signals in a model referenced by a Model block, select the Model block
and then select Log referenced signals from the model editor’s Edit menu or
from the block’s context menu. The Model Reference Signal Logging dialog
box appears.

=): Model Reference Signal Logging: log_mod_ref/Delay (delay) =10ix
[ECdEinieraren s ™ Log signals as specified by the referenced model
=g delay r m g :
EE Bain gnal Properties
B Lag Signal Name: [
T:y Comwpare To Constant ™ Log signal data

ﬂ Counter|counter)

rLogging narme

IUSE sighal na... LI Ip
rData

™| Limit data points o last 5000
I™ Decimation: 3

| Reauty 0Ok | Cancel Help Apply

The dialog box contains the following panes and controls.

Model Hierarchy

This pane displays the contents of the referenced model as a tree control with
expandable nodes. The top-level node represents the referenced model.
Expanding this node displays the subsystems that the referenced model
contains and any models that it itself references. Expanding a subsystem node
displays the subsystems that it contains and the models that it references.

logging Signals

Signals

This pane displays the test points of the model or subsystem selected in the
Model Hierarchy pane (see “Working with Test Points” on page 6-35). Check
the checkbox next to a test point’s name to specify that it should be logged.

Note Simulink does not support logging of virtual buses in referenced
models. If you enable logging for such a bus, Simulink displays a warning
message when you simulate the model.

Log signals as specified by the referenced model

Checking this checkbox causes Simulink to log the signals that the referenced
model specifies should be logged.

Signal Properties

This pane is enabled if Log signals as specified by the referenced model is
not selected. In this case, the controls on this pane allow you to specify the
signal logging properties of the signal selected in the Signals pane. The values
that you specify override for this instance of the referenced model those
specified by the model itself. The controls correspond to the controls of the same
name on the Signal Properties dialog box. See “Signal Properties Dialog Box”
on page 6-30 for information on how to use them.

Accessing Logged Signal Data

Simulink saves signal data that it logs during simulation in a Simulink data
object of type Simulink.ModelDatalogs that resides in the MATLAB
workspace. The name of the object’s handle is 1logsout by default. The Data
Import/Export configuration pane (see “Data Import/Export Pane” on

page 10-39) allows you to specify another name for this object. See
Simulink.ModelDatalLogs in the “Data Object Classes” chapter of the Simulink
Reference for information on extracting signal data from this object.

Note Logging data is available only at the end of a simulation. It is not
available when the simulation is paused.

6-29

6 Working with Signals

Signal Properties Dialog Box

The Signal Properties dialog box lets you display and edit signal properties.
To display the dialog box, either

¢ Select the line that represents the signal whose properties you want to set
and then choose Signal Properties from the signal’s context menu or from
the Simulink Edit menu

or

¢ Select the block that outputs the signal and select Output Port Signal
Properties from the block’s context menu

The dialog box appears.

Z)signal Properties: {unnamed) 2=

Signal name: || Show propagated signals I off 'l
I~ Signal name must resolve to Simulink signal objsct

Logging and accessibility I Real-Time Woaorkshop | Documentation I
™ Logsignal data I Test point
—Logging name

I Usze signal name L”

—Data

I~ Limit data points to last ISDDD

I~ Decimation: |2

Ok I Lancel | Help | Apply |

The dialog box includes the follow controls.

Signal name
Name of signal.

Signal name must resolve to a Simulink signal object.
Specifies that the MATLAB workspace must contain a Simulink.Signal object
with the same name as this signal. Simulink displays an error message if it

cannot find such an object when you update or simulate the model containing
this signal.

6-30

Signal Properties Dialog Box

Show propagated signals

Note This option appears only for signals that originate from a virtual block
other than a Bus Selector block.

Show propagated signal names. You can select one of the following options:

Option Description

off Do not display signals represented by a virtual signal in the
signal’s label.

on Display the virtual and nonvirtual signals represented by a
virtual signal in the signal’s label. For example, suppose
that virtual signal s1 represents a nonvirtual signal s2 and
a virtual signal s3. If this option is selected, the label for s1
is s1<s2, s3>,

all Display all the nonvirtual signals that a virtual signal
represents either directly or indirectly. For example,
suppose that virtual signal s1 represents a nonvirtual
signal s2 and a virtual signal s3 and virtual signal s3
represents nonvirtual signals s4 and s5. If this option is
selected, the label for s1 is s1<s2,s4,85>.

6-31

6 Working with Signals

Logging and Accessibility Options
Select the Logging and accessibility tab on the Signal Properties dialog box

to display controls that enable you to specify signal logging and accessibility
options for this signal.

Logging and accessibility I Real-Time "Woarkshap I Documentation
™ Logsignal data I Test point

—Logging name

I Usze signal name L”

—Data

I~ Limit data points to last ISDDD
I~ Decimation: |2

Log signal data

Select this option to cause Simulink to save this signal’s values to the MATLAB
workspace during simulation (see “Logging Signals” on page 6-27).

Test point

Select this option to designate this signal as a test point (see “Signal Properties
Dialog Box” on page 6-30).

Note Ifyou select the Log signal data option for this signal, Simulink selects
and disables the Test point option so that you cannot deselect it. This is
because a signal must be a test point to be logged.

Logging name

This pair of controls, consisting of a list box and an edit field, specifies the
signal’s logging name, i.e., the name under which to be used to retrieve the data
that Simulink logs for this signal during simulation.

Logging name:

I Uze signal name pitch

6-32

Signal Properties Dialog Box

Simulink uses the signal’s signal name as its logging name by default. To
specify a custom logging name, select Custom from the list box and enter the
custom name in the adjacent edit field.

Data

This group of controls enables you to limit the amount of data that Simulink
logs for this signal.

Diata

I~ Limit data points to last ISDDD
I~ Decimation: |2

The options are

Limit data points to last. Discard all but the last N data points where N is the
number entered in the adjacent edit field.

Decimation. Log every Nth data point where N is the number entered in the
adjacent edit field. For example, suppose that your model uses a fixed-step
solver with a step size of 0.1 s. if you select this option and accept the default
decimation value (2), Simulink records data points for this signal at times 0.0,
0.2,0.4, etc.

Real-Time Workshop Options

The following controls set properties used by Real-Time Workshop to generate
code from the model. You can ignore them if you are not going to generate code
from the model.

RTW storage class

Select the storage class of this signal from the list. See the Real-Time Workshop
User’s Guide for an explanation of the listed options.

RTW storage type qualifier

Select the storage type of this signal from the list. See the Real-Time Workshop
User’s Guide for more information.

6-33

6 Working with Signals

Documentation Options

Description
Enter a description of the signal in this field.

Document link

Enter a MATLAB expression in the field that displays documentation for the
signal. To display the documentation, click “Document Link.” For example,
entering the expression

web(['file:///' which('foo_signal.html')])

in the field causes MATLAB’s default Web browser to display
foo_signal.html when you click the field’s label.

6-34

Working with Test Poinfs

Working with Test Points

A test point is a signal that Simulink guarantees to be observable, for example,
on a Floating Scope, during a simulation. Simulink allows you to designate any
signal in a model as a test point. Designating a signal as a test point exempts
the signal from model optimizations, such as signal storage reuse (see “Signal
storage reuse” on page 10-46) and block reduction (see “Implement logic signals
as boolean data (vs. double)” on page 10-45), that can render signals
inaccessible and hence unobservable during simulation.

Designating a Signal as a Test Point

To designate a signal as a test point, check the Test point option on the signal’s
Signal Properties dialog box (see “Signal Properties Dialog Box” on
page 6-30).

Note Ifyou enable signal logging for a signal, Simulink designates the signal
as a test point automatically. This is because a signal must be accessible to be
logged (see “Enabling Signal Logging” on page 6-27 for more information).

Note If you set the test point property of a signal in a library that is
referenced by a model that is itself referenced by another model, you must
update the referenced model by opening and saving it. Otherwise, Simulink
cannot log or display the referenced signal.

Using Signal Objects to Designate Test Points

You can use Simulink.Signal objects to designate test points from the
MATLAB workspace.This allows you to designate test points in a model
without having to modify the model itself. To use a Simulink.Signal object to
control a signal’s visibility, the following conditions must be true:

¢ The model does not specify the signal as a test point, i.e., the Test point
option is unchecked in the Signal Properties dialog box.

6-35

6 Working with Signals

6-36

¢ The model specifies the signal’s storage class as auto (the default), i.e., the
Storage class option in the signal’s Signal Properties dialog box is set to

auto.
e A Simulink.Signal object is associated with the signal, i.e., the MATLAB
workspace contains a signal object having the same name as the signal.

If all these conditions are true, you can designate the signal as a test point by
setting the associated object’s storage class property to any value but auto.

Displaying Test Point Indicators

By default, Simulink displays an indicator next to each signal that serves as a
test point. These test point indicators enable you to find the test points in a
model at a glance.

Test point indicators

w1

RN SN BN S

Sine Wawe Gain Gain Gain2

The appearance of the indicator changes slightly to indicate test points for
which signal logging is enabled.

Logged signal indicator

ﬁu? ,{1 > D

Sine Wawe Gain

To turn display of test point indicators on or off, select Port/Signal Displays ->
Test Point Indicators from the Simulink Format menu.

Displaying Signal Properties

Displaying Signal Properties

A model window’s Format menu and its model context (right-click) menu offer
the following options for displaying signal properties on the block diagram.

Wide nonscalar lines

Draws lines that carry vector or matrix signals wider than lines that carry
scalar signals.

[123] |—inl

4 |——M=ignal?

Signal dimensions

Display the dimensions of nonscalar signals next to the line that carries the
signal.

6-37

6 Working with Signals

6-38

The format of the display depends on whether the line represents a single
signal or a bus. If the line represents a single vector signal, Simulink displays
the width of the signal. If the line represents a single matrix signal, Simulink
displays its dimensions as [NyxN,] where N; is the size of the ith dimension of
the signal. If the line represents a bus carrying signals of the same data type,
Simulink displays N{M} where N is the number of signals carried by the bus and
M is the total number of signal elements carried by the bus. If the bus carries
signals of different data types, Simulink displays only the total number of
signal elements {M}.

Port data types
Displays the data type of a signal next to the output port that emits the signal.

~_ | singke

inlig fch

cz

The notation (c) following the data type of a signal indicates that the signal is
complex.

Signal Names

You can assign names to signals by

¢ Editing the signal’s label
¢ Editing the Name field of the signal’s property dialog (see “Signal Properties
Dialog Box” on page 6-30)
¢ Setting the name parameter of the port or line that represents the signal,
e.g.,
p = get_param(gcb, 'PortHandles')
1 = get_param(p.Inport, 'Line')
set_param(l, 'Name', 's9')

Displaying Signal Properties

Signal Labels

A signal’s label displays the signal’s name. A virtual signal’s label optionally
displays the signals it represents in angle brackets. You can edit a signal’s
label, thereby changing the signal’s name.

To create a signal label (and thereby name the signal), double-click the line
that represents the signal. The text cursor appears. Enter the name and click
anywhere outside the label to exit label editing mode.

Note When you create a signal label, take care to double-click the line. If you
click in an unoccupied area close to the line, you will create a model
annotation instead.

Labels can appear above or below horizontal lines or line segments, and left or
right of vertical lines or line segments. Labels can appear at either end, at the
center, or in any combination of these locations.

To move a signal label, drag the label to a new location on the line. When you
release the mouse button, the label fixes its position near the line.

To copy a signal label, hold down the Ctrl key while dragging the label to
another location on the line. When you release the mouse button, the label
appears in both the original and the new locations.

To edit an existing signal label, select it:

® To replace the label, click the label, double-click or drag the cursor to select
the entire label, then enter the new label.

¢ To insert characters, click between two characters to position the insertion
point, then insert text.

¢ To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete all occurrences of a signal label, delete all the characters in the label.
When you click outside the label, the labels are deleted. To delete a single
occurrence of the label, hold down the Shift key while you select the label, then
press the Delete or Backspace key.

To change the font of a signal label, select the signal, choose Font from the
Format menu, then select a font from the Set Font dialog box.

6-39

6 Working with Signals

Displaying Signals Represented by Virtual Signals

To display the signal(s) represented by a virtual signal, click the signal’s label
and enter an angle bracket (<) after the signal’s name. (If the signal has no
name, simply enter the angle bracket.) Click anywhere outside the signal’s
label. Simulink exits label editing mode and displays the signals represented
by the virtual signal in brackets in the label.

You can also display the signals represented by a virtual signal by selecting the
Show Propagated Signals option on the signal’s property dialog (see “Signal
Properties Dialog Box” on page 6-30).

6-40

Working with Signal Groups

Working with Signal Groups

The Signal Builder block allows you to create interchangeable groups of signal
sources and quickly switch the groups into and out of a model. Signal groups
can greatly facilitate testing a model, especially when used in conjunction with
Simulink assertion blocks and the optional Model Coverage Tool.

Creating a Signal Group Set
To create an interchangeable set of signal groups:

1 Drag an instance of the Signal Builder block from the Simulink Sources
library and drop it into your model.

luntitled * = |EI|’X_|r ’

File Edit WYiew Simulation Format Tools Help”

0D E2Ed&| & | f)q| B) NSRS OIS O

E Signal 1 ke

Signal Builder

5
Tinne fech

Default waveform

Fl1o0% [[lodets

By default, the block represents a single signal group containing a single
signal source that outputs a square wave pulse.

2 Use the block’s signal editor (see “The Signal Builder Dialog Box” on
page 6-42) to create additional signal groups, add signals to the signal
groups, modify existing signals and signal groups, and select the signal
group that the block outputs.

3 Connect the output of the block to your diagram.

The block displays an output port for each signal that the block can output.

You can create as many Signal Builder blocks as you like in a model, each
representing a distinct set of interchangeable groups of signal sources. See

6-41

6 Working with Signals

6-42

“Simulating with Signal Groups” on page 6-51 for information on using signal
groups in a model.

The Signal Builder Dialog Box

The Signal Builder block’s dialog box allows you to define the waveforms of the

signals output by the block. You can specify any waveform that is piecewise
linear.

To open the dialog box, double-click the block. The Signal Builder dialog box
appears.

) signal Builder (untitled/Signal Builder) —[o x|
File Edit Group - Signal Axes Help

0= e S =l P B R) ST

Group 1

Signal 1

——— Group Panes

Time (sec)
Left Pomt Hight Poimnt P
Name: [Signal 1 T | T | 4+—— SI nul List
Index: [1 - e Kl— il g
Click to select signal \ |s|a‘an 111
Help Area Signal Name ~ Waveform Selection Status Area
and Index Coordinates

The Signal Builder dialog box allows you to create and modify signal groups

represented by a Signal Builder block. The Signal Builder dialog box includes
the following controls.

Working with Signal Groups

Group Panes

Displays the set of interchangeable signal source groups represented by the
block. The pane for each group displays an editable representation of the
waveform of each signal that the group contains. The name of the group
appears on the pane’s tab. Only one pane is visible at a time. To display a group
that is invisible, select the tab that contains its name. The block outputs the
group of signals whose pane is currently visible.

Signal Axes

The signals appear on separate axes that share a common time range (see
“Signal Builder Time Range” on page 6-50). This allows you to easily compare
the relative timing of changes in each signal. The Signal Builder automatically
scales the range of each axis to accommodate the signal that it displays. Use
the Signal Builder’s Axes menu to change the time (T) and amplitude (Y)
ranges of the selected axis.

Signal List

Displays the names and visibility (see “Editing Signals” on page 6-44) of the
signals that belong to the currently selected signal group. Clicking an entry in
the list selects the signal. Double-clicking a signal’s entry in the list hides or
displays the signal’s waveform on the group pane.

Selection Status Area

Displays the name of the currently selected signal and the index of the
currently selected waveform segment or point.

Waveform Coordinates

Displays the coordinates of the currently selected waveform segment or point.
You can change the coordinates by editing the displayed values (see “Editing
Waveforms” on page 6-46).

Name

Name of the currently selected signal. You can change the name of a signal by
editing this field (see “Renaming a Signal” on page 6-45).

6-43

6 Working with Signals

Index

Index of the currently selected signal. The index indicates the output port at
which the signal appears. An index of 1 indicates the topmost output port, 2
indicates the second port from the top, and so on. You can change the index of
a signal by editing this field (see “Changing a Signal’s Index” on page 6-46).

Help Area

Displays context-sensitive tips on using Signal Builder dialog box features.

Editing Signal Groups
The Signal Builder dialog box allows you to create, rename, move, and delete
signal groups from the set of groups represented by a Signal Builder block.

Creating and Deleting Signal Groups

To create a signal group, you must copy an existing signal group and then
modify it to suit your needs. To copy an existing signal group, select its tab and
then select Copy from the Signal Builder’s Group menu. To delete a group,
select its tab and then select Delete from the Group menu.

Renaming Signal Groups

To rename a signal group, select the group’s tab and then select Rename from
the Signal Builder’s Group menu. A dialog box appears. Edit the existing name
in the dialog box or enter a new name. Click OK.

Moving Signal Groups

To reposition a group in the stack of group panes, select the pane and then
select Move right from the Signal Builder’s Group menu to move the group
lower in the stack or Move left to move the pane higher in the stack.

Editing Signals
The Signal Builder dialog box allows you to create, cut and paste, hide, and
delete signals from signal groups.

Creating Signals

To create a signal in the currently selected signal group, select New from the
Signal Builder’s Signal menu. A menu of waveforms appears. The menu

6-44

Working with Signal Groups

includes a set of standard waveforms (Constant, Step, etc.) and a Custom
waveform option. Select one of the waveforms. If you select a standard
waveform, the Signal Builder adds a signal having that waveform to the
currently selected group. If you select Custom, a custom waveform dialog box
appears.

Custom waveform data |

Time YWalues: I

W Walles: I
OK | Cancel |

The dialog box allows you to specify a custom piecewise linear waveform to be
added to the groups defined by the Signal Builder block. Enter the custom
waveform’s time coordinates in the T Values field and the corresponding signal
amplitudes in the Y Values field. The entries in either field can be any
MATLAB expression that evaluates to a vector. The resulting vectors must be
of equal length. Select OK. The Signal Builder adds a signal having the
specified waveform to the currently selected group.

Cutting and Pasting Signals
To cut or copy a signal from one group and paste it into another group:

1 Select the signal you want to cut or copy.

2 Select Cut or Copy from the Signal Builder’s Edit menu or click the
corresponding button from the toolbar.

3 Select the group into which you want to paste the signal.

4 Select Paste from the Signal Builder’s Edit menu or click the corresponding
button on the toolbar.

Renaming a Signal

To rename a signal, select the signal and choose Rename from the Signal
Builder’s Signal menu. A dialog box appears with an edit field that displays the
signal’s current name. Edit or replace the current name with a new name. Click
OK. Or edit the signal’s name in the Name field in the lower left corner of the
Signal Builder dialog box.

6-45

6 Working with Signals

Changing a Signal’s Index

To change a signal’s index, select the signal and choose Change Index from the
Signal Builder’s Signal menu. A dialog box appears with an edit field

containing the signal’s existing index. Edit the field and select OK. Or select an
index from the Index list in the lower left corner of the Signal Builder window.

Hiding Signals

By default, the Signal Builder dialog box displays the waveforms of a group’s
signals in the group’s tabbed pane. To hide a waveform, select the waveform
and then select Hide from the Signal Builder’s Signal menu. To redisplay a
hidden waveform, select the signal’s Group pane, then select Show from the
Signal Builder’s Signal menu to display a menu of hidden signals. Select the
signal from the menu. Alternatively, you can hide and redisplay a hidden
waveform by double-clicking its name in the Signal Builder’s signal list (see
“Signal List” on page 6-43).

Editing Waveforms

The Signal Builder dialog box allows you to change the shape, color, and line
style and thickness of the signal waveforms output by a signal group.

Reshaping a Waveform

The Signal Builder dialog box allows you to change the shape of a waveform
by selecting and dragging its line segments and points with the mouse or arrow
keys or by editing the coordinates of segments or points.

Selecting a Waveform. To select a waveform, left-click the mouse on any point on
the waveform.

1---Signal 1
0.8
0.6
0.4
0.2

0 2 4 6 8 10
Time (sec)

6-46

Working with Signal Groups

The Signal Builder displays the waveform’s points to indicate that the
waveform is selected.

A= Signal 1 -F---mmmmm b
1 S S S S
(1) SRS SN SN SR N
(7] SRS TGt SN S S
(17 SO ORI SN R SRS S S

To deselect a waveform, left-click any point on the waveform graph that is not
on the waveform itself or press the Esc key.

Selecting points. To select a point of a waveform, first select the waveform. Then
position the mouse cursor over the point. The cursor changes shape to indicate
that it is over a point.

110 objects in model

Generators | Viewers I

MName | Type |

Left-click the point with the mouse. The Signal Builder draws a circle around
the point to indicate that it is selected.

A= Signal 1 -F---mmmmm b
1 S S S S
(1) SRS SN SN SR N
(7] SRS S-St SN S S
(17 SO ORI SN R SRS S S

Time (sec)

To deselect the point, press the Esc key.

6-47

6 Working with Signals

Selecting Segments. To select a line segment, first select the waveform that
contains it. Then left-click the segment. The Signal Builder thickens the
segment to indicate that it is selected.

Tr---Signal 1--F---=--m-mrmremmmenoe AARREEEEEEERE ARREEE R

Time (sec)
To deselect the segment, press the Esc key.

Moving Waveforms. To move a waveform, select it and use the arrow keys on
your keyboard to move the waveform in the desired direction. Each key stroke
moves the waveform to the next location on the snap grid (see “Snap Grid” on
page 6-49) or by 0.1 inches if the snap grid is not enabled.

Dragging Segments. To drag a line segment to a new location, position the mouse
cursor over the line segment. The mouse cursor changes shape to show the
direction in which you can drag the segment.

04

0.2

Press the left mouse button and drag the segment in the direction indicated to
the desired location. You can also use the arrow keys on your keyboard to move
the selected line segment.

Dragging points. To drag a point along the signal amplitude (vertical) axis, move
the mouse cursor over the point. The cursor changes shape to a circle to

6-48

Working with Signal Groups

indicate that you can drag the point. Drag the point parallel to the x-axis to the
desired location. To drag the point along the time (horizontal) axis, press the
Shift key while dragging the point. You can also use the arrow keys on your
keyboard to move the selected point.

Snap Grid. Each waveform axis contains an invisible snap grid that facilitates
precise positioning of waveform points. The origin of the snap grid coincides
with the origin of the waveform axis. When you drop a point or segment that
you have been dragging, the Signal Builder moves the point or the segment’s
points to the nearest point or points on the grid, respectively. The Signal
Builder’s Axes menu allows you to specify the grid’s horizontal (time) axis and
vertical (amplitude) axis spacing independently. The finer the spacing, the
more freedom you have in placing points but the harder it is to position points
precisely. By default, the grid spacing is 0, which means that you can place
points anywhere on the grid; i.e., the grid is effectively off. Use the Axes menu
to select the spacing that you prefer.

Inserting and Deleting points. To insert a point, first select the waveform. Then
hold down the Shift key and left-click the waveform at the point where you
want to insert the point. To delete a point, select the point and press the Del
key.

Editing Point Coordinates. To change the coordinates of a point, first select the
point. The Signal Builder displays the current coordinates of the point in the
Left Point edit fields at the bottom of the Signal Builder dialog box. To change
the amplitude of the selected point, edit or replace the value in the y field with
the new value and press Enter. The Signal Builder moves the point to its new
location. Similarly edit the value in the t field to change the time of the selected
point.

Editing Segment Coordinates. To change the coordinates of a segment, first select
the segment. The Signal Builder displays the current coordinates of the
endpoints of the segment in the Left Point and Right Point edit fields at the
bottom of the Signal Builder dialog box. To change a coordinate, edit the value
in its corresponding edit field and press Enter.

Changing the Color of a Waveform

To change the color of a signal waveform, select the waveform and then select
Color from the Signal Builder’s Signal menu. The Signal Builder displays the
MATLAB color chooser. Choose a new color for the waveform. Click OK.

6-49

6 Working with Signals

Changing a Waveform's Line Style and Thickness

The Signal Builder can display a waveform as a solid, dashed, or dotted line. It
uses a solid line by default. To change the line style of a waveform, select the
waveform, then select Line style from the Signal Builder’s Signal menu. A
menu of line styles pops up. Select a line style from the menu.

To change the line thickness of a waveform, select the waveform, then select
Line width from the Signal menu. A dialog box appears with the line’s current
thickness. Edit the thickness value and click OK.

Signal Builder Time Range

The Signal Builder’s time range determines the span of time over which its
output is explicitly defined. By default, the time range runs from 0 to 10
seconds. You can change both the beginning and ending times of a block’s time
range (see “Changing a Signal Builder’s Time Range” on page 6-50).

If the simulation starts before the start time of a block’s time range, the block
extrapolates its initial output from its first two defined outputs. If the
simulation runs beyond the block’s time range, the block by default outputs its
final defined values for the remainder of the simulation. The Signal Builder’s
Simulation Options dialog box allows you to specify other final output options
(see “Signal values after final time” on page 6-52 for more information).

Changing a Signal Builder’s Time Range

To change the time range, select Change time range from the Signal Builder’s
Axes menu. A dialog box appears.

) Set the total time rang |

Min time: | il

I aw Time: | 10

()3 Cancel

Edit the Min. time and Max. time fields as necessary to reflect the beginning
and ending times of the new time range, respectively. Click OK.

6-50

Working with Signal Groups

Exporting Signal Group Data

To export the data that define a Signal Builder block’s signal groups to the
MATLAB workspace, select Export to workspace from the block’s File menu.
A dialog box appears.

-} Export to workspace |

‘W ariable name: | channels

()3 Cancel

The Signal Builder exports the data by default to a workspace variable named
channels. To export to a differently named variable, enter the variable’s name
in the Variable name field. Click OK. The Signal Builder exports the data to
the workspace as the value of the specified variable. The exported data is an
array of structures.

Simulating with Signal Groups

You can use standard simulation commands to run models containing Signal
Builder blocks or you can use the Signal Builder’s Run all command (see
“Running All Signal Groups” on page 6-51).

Activating a Signal Group

During a simulation, a Signal Builder block always outputs the active signal
group. The active signal group is the group selected in the Signal Builder
dialog box for that block, if the dialog box is open, otherwise the group that was
selected when the dialog box was last closed. To activate a group, open the
group’s Signal Builder dialog box and select the group.

Running Different Signal Groups in Succession

The Signal Builder’s toolbar includes the standard Simulink buttons for
running a simulation. This facilitates running several different signal groups
in succession. For example, you can open the dialog box, select a group, run a
simulation, select another group, run a simulation, etc., all from the Signal
Builder’s dialog box.

Running All Signal Groups

To run all the signal groups defined by a Signal Builder block, open the block’s
dialog box and select the Run all ' button from the Signal Builder’s toolbar.

6-51

6 Working with Signals

The Run all command runs a series of simulations, one for each signal group
defined by the block. If you have installed the optional Model Coverage Tool on
your system, the Run all command configures the tool to collect and save
coverage data for each simulation in the MATLAB workspace and display a
report of the combined coverage results at the end of the last simulation. This
allows you to quickly determine how well a set of signal groups tests your
model.

Note To stop a series of simulations started by the Run all command, enter
Control-c at the MATLAB command line.

Simulation Options Dialog Box

The Simulation Options dialog box allows you to specify simulation options
pertaining to the Signal Builder. To display the dialog box, select Simulation
Options from the Signal Builder’s File menu. The dialog box appears.

.} Simulation Options |
Signal walues after final time: IHold final value j
Sample time: | il

()3 Cancel

The dialog box allows you to specify the following options.

Signal values after final time

The setting of this control determines the output of the Signal Builder block if
a simulation runs longer than the period defined by the block. The options are
® Hold final value

Selecting this option causes the Signal Builder block to output the last
defined value of each signal in the currently active group for the remainder
of the simulation.

6-52

Working with Signal Groups

® Extrapolate
Selecting this option causes the Signal Builder block to output values
extrapolated from the last defined value of each signal in the currently active
group for the remainder of the simulation.

® Set to zero
Selecting this option causes the Signal Builder block to output zero for the
remainder of the simulation.

6-53

6 Working with Signals

Sample time

Determines whether the Signal Builder block outputs a continuous (the
default) or a discrete signal. If you want the block to output a continuous signal,
enter 0 in this field. For example, the following display shows the output of a
Signal Builder block set to output a continuous Gaussian waveform over a
period of 10 seconds.

If you want the block to output a a discrete signal, enter the sample time of the
signal in this field. The following example shows the output of a Signal Builder
block set to emit a discrete Gaussian waveform having a 0.5 second sample
time.

6-54

Bus Editor

Bus Editor

The Simulink Bus Editor allows you to change the properties of bus type
objects, i.e., instances of Simulink.Bus class. You can open the Bus Editor in
any of the following ways:

¢ Select Bus Editor from the model editor’s Tools menu.

¢ Select the Launch Bus Editor button on a bus object’s dialog box in the
Model Explorer.

® Enter buseditor at the MATLAB command line.

After you have performed any of these actions, the Bus Editor appears.

<} Bus Types Editor -0l x|
[Bus types in base workspace [Bus element:
E* = control Mame Dirmensian DataBus Type Sample Time Complexity Sampling Mocle
valvel B 1 hoolgan s -1 real - | Sample based T
o valve? 1 double s -1 real - | Sample based T
= [IE) 1 double s -1 real - | Sample based T
= 1 contral (] -1 real 7| Sample based 7|
3

W

— Bus natni Header file that contains typedef for bus
= (cortrol) " ‘ ﬁ
it

~Bus description

[[x

main bus ﬁ

[
=

Set description for bus "'main* ‘ Helg | Cloze |

6-55

6 Working with Signals

The Bus Editor contains the following groups of controls.

Bus types in base workspace

This group contains a bus object hierarchy pane and a column of editing
command buttons.

m

us types in base workspace

control
== main

=
a
W
=4

[{cortral)

Lo [[| |

Bus Object Hierarchy Pane

The bus object hierarchy pane displays the structure of bus objects in the
Simulink base (i.e., MATLAB) workspace. The pane displays each object as an
expandable tree control. The root node of the tree displays the name of the
MATLAB variable that references the bus object and, if the bus contains any
elements, a button for expanding and collapsing the node. Expanding a bus
node displays nodes representing the bus’s top-level elements. Each element
node displays the element’s name. If the element is itself a bus object, the
element appears as a bus node that can itself be expanded and collapsed.
Selecting any top-level bus object node displays the bus object’s properties in
the control groups to the right of the bus object hierarchy pane (see below).
Selecting any element displays the element’s properties in the Bus Editor’s Bus
elements table.

6-56

Bus Editor

Editing Buttons

This group of buttons allows you to create and modify bus objects in the
Simulink base (MATLAB) workspace. It includes the following buttons.

Command Ilcon Description

Create 4 Create a bus object in the Simulink base
= (MATLAB) workspace.

Insert = Insert an element in the bus object selected in the
ne Bus Editor’s bus object hierarchy pane.

Delete Delete the bus or bus element selected in the Bus

Editor’s bus object hierarchy pane.
Move Up Move the selected element up in the list of a bus

Move Down

4 s %

object’s elements.

Move the selected element down in the list of a bus
object’s elements.

Bus elements

This table displays the properties of the top-level elements of the bus object
selected in the bus object hierarchy pane or of the selected element.

Bus element:

Mame Dimenszion

DataBus Type Sample Time Complexity Sampling Mode

1

hoolean

-1 real Sarmple based

double

real Sarmple based

1

double

Aafa)
|

-1 real = | Sample bazed

Aafa)
|

1

cortral

-1 real Sarmple based

The table’s cells contain controls that enable you to change the displayed
property values. See the documentation for Simulink.BusElement class for a
description of the usage and valid values for each property.

Bus name

Specifies the name of the workspace variable that references the selected bus

object.

6-57

6 Working with Signals

Header file

Name of a C header file that defines the user-defined type corresponding to this
bus. Simulink ignores this field, which is used by Real-Time Workshop.

Bus description
Description of this bus. Simulink ignores this field.

6-58

Working with Data

The following sections explain how to specify the data types of signals and parameters and how to
create data objects.

Working with Data Types (p. 7-2) How to specify the data types of signals and parameters.

Working with Data Objects (p. 7-10) How to create data objects and use them as signal and
parameter values.

Subclassing Simulink Data Classes How to create new types of data objects.
(p. 7-18)
Associating User Data with Blocks How to associate data with a block.

(p. 7-30)

7 Working with Data

7-2

Working with Data Types

The term data type refers to the way in which a computer represents numbers
in memory. A data type determines the amount of storage allocated to a
number, the method used to encode the number’s value as a pattern of binary
digits, and the operations available for manipulating the type. Most computers
provide a choice of data types for representing numbers, each with specific
advantages in the areas of precision, dynamic range, performance, and memory
usage. To enable you to take advantage of data typing to optimize the
performance of MATLAB programs, MATLAB allows you to specify the data
types of MATLAB variables. Simulink builds on this capability by allowing you
to specify the data types of Simulink signals and block parameters.

The ability to specify the data types of a model’s signals and block parameters
is particularly useful in real-time control applications. For example, it allows a
Simulink model to specify the optimal data types to use to represent signals
and block parameters in code generated from a model by automatic
code-generation tools, such as Real-Time Workshop available from The
MathWorks. By choosing the most appropriate data types for your model’s
signals and parameters, you can dramatically increase performance and
decrease the size of the code generated from the model.

Simulink performs extensive checking before and during a simulation to
ensure that your model is typesafe, that is, that code generated from the model
will not overflow or underflow and thus produce incorrect results. Simulink
models that use the default data type (double) are inherently typesafe. Thus,
if you never plan to generate code from your model or use a nondefault data
type in your models, you can skip the remainder of this section.

On the other hand, if you plan to generate code from your models and use
nondefault data types, read the remainder of this section carefully, especially
the section on data type rules (see “Data Typing Rules” on page 7-6). In that
way, you can avoid introducing data type errors that prevent your model from
running to completion or simulating at all.

Data Types Supported by Simulink

Simulink supports all built-in MATLAB data types except int64 and uint64.
The term built-in data type refers to data types defined by MATLAB itself as
opposed to data types defined by MATLAB users. Unless otherwise specified,
the term data type in the Simulink documentation refers to built-in data types.

Working with Data Types

The following table lists the built-in MATLAB data types supported by

Simulink.
Name Description
double Double-precision floating point
single Single-precision floating point
int8 Signed 8-bit integer
uint8 Unsigned 8-bit integer
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
int32 Signed 32-bit integer
uint32 Unsigned 32-bit integer

Besides the built-in types, Simulink defines a boolean (1 or 0) type, instances
of which are represented internally by uint8 values. Many Simulink blocks
also support fixed-point data types. See “Simulink Blocks” in the online
Simulink documentation for information on the data types supported by
specific blocks for parameter and input and output values. If the
documentation for a block does not specify a data type, the block inputs or
outputs only data of type double.

Fixed-Point Data

Simulink allows you to create models that use fixed-point numbers to represent
signals and parameter values. Use of fixed-point data can reduce the memory
requirements and increase the speed of code generated from a model.

To simulate a fixed-point model, you must have the Simulink Fixed Point
product installed on your system. If Simulink Fixed Point is not installed on
your system, you can simulate a fixed-point model as a floating-point model by
enabling automatic conversion of fixed-point data to floating-point data during
simulation. See “Fixed-Point Settings Interface” on page 7-4 for more
information. If you do not have Simulink Fixed Point installed and do not

7 Working with Data

enable automatic conversion of fixed-point to floating-point data, Simulink
displays an error when you try to simulate a fixed-point model.

You can edit a model containing fixed-point blocks without Simulink Fixed
Point. However, you must have Simulink Fixed Point to

¢ Update a Simulink diagram (Ctrl+D) containing fixed-point data types

¢ Run a model containing fixed-point data types

¢ Generate code from a model containing fixed-point data types

¢ Log the minimum and maximum values produced by a simulation

¢ Automatically scale the output of a model using the autoscaling tool

Fixed-Point Settings Interface

Most of the functionality in the Fixed-Point Settings interface is for use with

the Simulink Fixed Point product. However, even if you do not have Simulink
Fixed Point, you can use the Fixed-Point Settings interface to perform a data
type override that allows you to work with a fixed-point model.

If you do not have Simulink Fixed Point, you can work with a model containing
Simulink blocks with fixed-point settings by doing the following:

1 Access the Fixed-Point Settings interface from the model by selecting
Tools -> Fixed-Point Settings.

2 Set the Logging mode parameter to Force off model wide.

3 Set the Data type override parameter to True doubles or True singles
model wide.

This procedure allows you to share fixed-point Simulink models among people
in your company who may or may not have Simulink Fixed Point.

Block Support for Data and Numeric Signal Types

All Simulink blocks accept signals of type double by default. Some blocks
prefer boolean input and others support multiple data types on their inputs.
See “Simulink Blocks” in the online Simulink documentation for information
on the data types supported by specific blocks for parameter and input and

7-4

Working with Data Types

output values. If the documentation for a block does not specify a data type, the
block inputs or outputs only data of type double.

Specifying Block Parameter Data Types

When entering block parameters whose data type is user-specifiable, use the
syntax

type(value)

to specify the parameter, where type is the name of the data type and value is
the parameter value. The following examples illustrate this syntax.

single(1.0) Specifies a single-precision value of 1.0
int8(2) Specifies an 8-bit integer of value 2
int32(3+2i) Specifies a complex value whose real and

imaginary parts are 32-bit integers

You can specify any MATLAB built-in data type supported by Simulink as the
data type of a parameter (see “Data Types Supported by Simulink” on
page 7-2). You cannot specify fixed-point data types as parameter data types.

Creating Signals of a Specific Data Type

You can introduce a signal of a specific data type into a model in any of the
following ways:

¢ Load signal data of the desired type from the MATLAB workspace into your
model via a root-level inport or a From Workspace block.

¢ Create a Constant block in your model and set its parameter to the desired
type.

¢ Use a Data Type Conversion block to convert a signal to the desired data
type.

Displaying Port Data Types

To display the data types of ports in your model, select Port Data Types from
the Simulink Format menu. Simulink does not update the port data type

7-5

7 Working with Data

display when you change the data type of a diagram element. To refresh the
display, type Ctrl+D.

Data Type Propagation

Whenever you start a simulation, enable display of port data types, or refresh
the port data type display, Simulink performs a processing step called data
type propagation. This step involves determining the types of signals whose
type is not otherwise specified and checking the types of signals and input ports
to ensure that they do not conflict. If type conflicts arise, Simulink displays an
error dialog that specifies the signal and port whose data types conflict.
Simulink also highlights the signal path that creates the type conflict.

Note You can insert typecasting (data type conversion) blocks in your model
to resolve type conflicts. See “Typecasting Signals” on page 7-7 for more
information.

Data Typing Rules

Observing the following rules can help you to create models that are typesafe
and, therefore, execute without error:

¢ Signal data types generally do not affect parameter data types, and vice

versa.

A significant exception to this rule is the Constant block, whose output data
type is determined by the data type of its parameter.

¢ If the output of a block is a function of an input and a parameter, and the
input and parameter differ in type, Simulink converts the parameter to the
input type before computing the output.

See “Typecasting Parameters” on page 7-7 for more information.
¢ In general, a block outputs the data type that appears at its inputs.

Significant exceptions include Constant blocks and Data Type Conversion
blocks, whose output data types are determined by block parameters.

¢ Virtual blocks accept signals of any type on their inputs.

Examples of virtual blocks include Mux and Demux blocks and
unconditionally executed subsystems.

7-6

Working with Data Types

¢ The elements of a signal array connected to a port of a nonvirtual block must
be of the same data type.

¢ The signals connected to the input data ports of a nonvirtual block cannot
differ in type.

¢ Control ports (for example, Enable and Trigger ports) accept any data type.
¢ Solver blocks accept only double signals.

¢ Connecting a non-double signal to a block disables zero-crossing detection
for that block.

Enabling Strict Boolean Type Checking

By default, Simulink detects but does not signal an error when it detects that
double signals are connected to blocks that prefer boolean input. This ensures
compatibility with models created by earlier versions of Simulink that support
only double data type. You can enable strict Boolean type checking by clearing
the Implement logic signals as boolean data option on the Optimization
panel of the Configuration Parameters dialog box (see “The options are
typically to do nothing or to display a warning or an error message (see
“Diagnosing Simulation Errors” on page 10-72). A warning message does not
terminate a simulation, but an error message does.” on page 10-48).

Typecasting Signals

Simulink displays an error whenever it detects that a signal is connected to a
block that does not accept the signal’s data type. If you want to create such a
connection, you must explicitly typecast (convert) the signal to a type that the
block does accept. You can use the Data Type Conversion block to perform such
conversions.

Typecasting Parameters

In general, during simulation, Simulink silently converts parameter data types
to signal data types (if they differ) when computing block outputs that are a
function of an input signal and a parameter. The following exceptions to this
rule occur:

¢ Ifthe signal data type cannot represent the parameter value, Simulink halts
the simulation and signals an error.

Consider, for example, the following model.

7-7

7 Working with Data

uinggp1y I > uints 255

Gonstant Gain Display

Gain: "Gain"
Gain=int32(255)
S aturateOnlntegerD verflow=on

This model uses a Gain block to amplify a constant input signal. Computing
the output of the Gain block requires computing the product of the input
signal and the gain. Such a computation requires that the two values be of
the same data type. However, in this case, the data type of the signal, uint8
(unsigned 8-bit word), differs from the data type of the gain parameter,
int32 (signed 32-bit integer). Thus computing the output of the Gain block
entails a type conversion.

When making such conversions, Simulink always casts the parameter type
to the signal type. Thus, in this case, Simulink must convert the Gain block’s
gain value to the data type of the input signal. Simulink can make this
conversion only if the input signal’s data type (uint8) can represent the gain.
In this case, Simulink can make the conversion because the gain is 255,
which is within the range of the uint8 data type (0 to 255). Thus, this model
simulates without error. However, if the gain were slightly larger (for
example, 256), Simulink would signal an out-of-range error if you attempted
to simulate the model.

Ifthe signal data type can represent the parameter value but only at reduced
precision, Simulink optionally issues a warning message and continues the
simulation (see “Parameter precision loss” on page 10-53).

Consider, for example, the following model.

ey |20 b s —

Gonstant Gain Display

In this example, the signal type accommodates only integer values, while the
gain value has a fractional component. Simulating this model causes
Simulink to truncate the gain to the nearest integral value (2) and issue a
loss-of-precision warning. On the other hand, if the gain were 2.0, Simulink
would simulate the model without complaint because in this case the
conversion entails no loss of precision.

Working with Data Types

Note Conversion of an int32 parameter to a float or double can entail a
loss of precision. The loss can be severe if the magnitude of the parameter
value is large. If an int32 parameter conversion does entail a loss of precision,

Simulink issues a warning message.

7-9

7 Working with Data

7-10

Working with Data Objects

Simulink allows you to create entities called data objects that specify values,
data types, tunability, value ranges, and other key attributes of block outputs
and parameters. You can assign such objects to workspace variables and use
the variables in Simulink dialog boxes to specify parameter and signal
attributes. This allows you to make model-wide changes to parameter and
signal specifications simply by changing the values of a few variables. In other
words, Simulink objects allow you to parameterize the specification of a model’s
data attributes.

Note This section uses the term data to refer generically to signals and
parameters.

Simulink allows you to create various types of data objects, each intended to be
used to specify a particular type of data attribute or set of data attributes, such
as a data item’s type or value. The rest of this section describes features and
procedures for working with data objects that apply to all data objects
regardless of type. For information on working with specific kinds of data
object, see the “Data Object Classes” section of the Simulink Reference.

About Data Object Classes

Simulink uses objects called data classes to define the properties of specific
types of data objects. The classes also define functions, called methods, for
creating and manipulating instances of particular types of objects. Simulink
provides a set of built-in classes for specifying specific types of attributes (see
“Data Object Classes” on page 8-1 for information on these built-in classes).
Some MathWorks products based on Simulink, such as Real-Time Workshop,
also provide classes for specifying data attributes specific to their applications.
See the documentation for those products for information on the classes they
provide. You can also create subclasses of some of these built-in classes to
specify attributes specific to your applications (see “Subclassing Simulink Data
Classes” on page 7-18).

Simulink uses memory structures called packages to store the code and data
that implement data classes. The classes provided by Simulink reside in the
Simulink package. Classes provided by products based on Simulink reside in

Working with Data Obijects

packages provided by those products. You can create your own packages for
storing the classes that you define.

Class Naming Convention
Simulink uses dot notation to name classes:

PACKAGE .CLASS

where CLASS is the name of the class and PACKAGE is the name of the
package to which the class belongs, for example, Simulink.Parameter. This
notation allows you to create and reference identically named classes that
belong to different packages. In this notation, the name of the package is said
to qualify the name of the class.

Note Class and package names are case sensitive. You cannot, for example,
use A.B and a.b interchangeably to refer to the same class.

Handle Versus Value Classes

Simulink data object classes fall into two categories: value classes and handle
classes. An instance of a value class is permanently associated with the
MATLAB variable to which it is initially assigned. Reassigning or passing the
variable to a function causes MATLAB to create and assign or pass a copy of
the original object. An instance of a handle class is associated with a handle
object. The handle can be assigned to multiple variables or passed to functions
without causing a copy of the original object to be created. A program can
modify an instance of a handle class by modifying any variable that references
it. Most Simulink data object classes are value classes. Exceptions include
Simulink.Signal and Simulink.Parameter class.

About Data Object Methods

Data classes define functions, called methods, for creating and manipulating
the objects that they define. Constructors (see below) are the only methods that
you need to use Simulink data objects. The other methods defined by the
Simulink built-in data classes are intended for internal use and are not
documented.

7-11

7 Working with Data

Constructors

Every data class defines a method for creating instances of that class. The
name of the method is the same as the name of the class. For example, the
name of the Simulink.Parameter class’s constructor is Simulink.Parameter.
The constructors defined by Simulink data classes take no arguments. A
constructor returns a handle to the instance that it creates if the class of the
instance is a handle class; otherwise, it returns the instance itself (see “Handle
Versus Value Classes” on page 7-11).

Creating Data Objects

You can use either the Model Explorer (see next topic) or MATLAB commands
(see “Using MATLAB Commands to Create Data Objects” on page 7-13) to
create Simulink data objects.

Using the Model Explorer to Create Data Objects

To use the Model Explorer (see “The Model Explorer” on page 9-2) to create
data objects, first select the workspace in which you want to create the object
in the Model Explorer’s Model Hierarchy pane.

& Model Explorer (=] 9]
File Edit Wiew Tools Add Help

[D[smax[BH<%H70[@n4n[swraza
JJSearch: Ib_n,l Block Type LI Type: IFcn LI % Search

Model Hierarchy | Contents of: Baze ‘Workspace Base Workspace

-

. . The base [MATLAR] workspace containg variables
I B I Valuel DataTypeI Dimetsion that are visible to all Simulink models. These variables
can be uged to parameterize certain model, block and
zignal parameters.

il | ol
| LContents |§earch Results | Bevert | Help | Apply

N —

Then, select the type of the object that you want to create (e.g., Simulink
Parameter or Simulink Signal) from the Model Explorer’s Add menu or from
its toolbar. Simulink creates the object, assigns it to a variable in the selected

7-12

Working with Data Obijects

workspace, and displays its properties in the Model Explorer’s Contents and
Dialog panes.

& Model Explorer I =1ol x|

File Edit Wiew Tools Add Help

[D[smax[BH<%H70[@n4n[swraza
JJSearch: Iby Elock Type LI Type: IFc:n LI Search ‘

Model Hierarchy | Contents of: Baze ‘Workspace Simulink.Parameter: Param
I N ame IVaIueI DataTypeI Dimensi | Yalue: I[] j
It‘i‘ﬁ] Patam] [rata type: Iaulo Units: I
Dimensions: I[l]xl]] Camplezity: Ileal
M'inimum: [inf Mi‘:ximum: IIn_ILI
| 2| :
| LContents | Search Results | Bevert | Help | Apply |

4

Ifthe type of object you want to create does not appear on the Add menu, select
Find Custom from the menu. Simulink searches the MATLAB path for all data
object classes derived from Simulink class on the MATLAB path, including
types that you have created, and displays the result in a dialog box.

2 Model Explorer - Select Object 21l
Object namelz]: |[lEH
Object class: I Simulink. Parameter LI

()3 I Cancel |

Select the type of object (or objects) that you want to create from the Object
Class list and enter the names of the workspace variables to which you want
the objects to be assigned in the Object name(s) field. Simulink creates the
specified objects and displays them in the Model Explorer’s Contents pane.

Using MATLAB Commands to Create Data Objects

You can use data object constructors to create instances of data classes at the
MATLAB command line or in MATLAB scripts. For example, the following
command creates an instance of a Simulink parameter object:

gain = Simulink.Parameter;

7-13

7 Working with Data

Note Because Simulink.Parameter is a handle class (see “Handle Versus
Value Classes” on page 7-11, the value of gain is a handle to the newly created
object rather than the object itself. You could thus create additional references
to the object by assigning gain to other variables.

About Object Properties

Object properties are variables associated with an object that specify properties
of the entity that the object represents, for example, the size of a data type. The
object’s class defines the names, value types, default values, and valid value
ranges of the object’s properties.

7-14

Working with Data Obijects

Changing Object Properties

You can use either the Model Explorer (see next topic) or MATLAB comands to

change a data object’s properties (see “Using MATLAB Commands to Change
an Object’s Properties” on page 7-16).

Using the Model Explorer to Change an Object’s Properties

To use the Model Explorer to change an object’s properties, select the
workspace that contains the object in the Model Explorer’s Model Hierarchy
pane. Then select the object in the Model Explorer’s Contents pane.

The Model Explorer displays the object’s property dialog box in its Dialog pane

(if the pane is visible).
& Model Explorer =1olx]
Eile Edit Yiew Tools Add Help
DZlimaxBHenHf0[@m 4k [ewaza
Hﬁeamh Iby Block Type ;I Type: IFcn ;I %’ Search |
Model Hierarchy I Contents of. Base Warkspace Simulink.Parameter: Param
(2 (B8] Simulink Foot Yalue: n =
---mEaseWorkspace g
-Evdp Data type: Iaulo Urits:

Dimensions: I[I]xl]] Complexity: [real

Minimum: -Inf Mazimum: |Inf

—Code generation option:

Starage class: IAutD LI
Customize Cantents i I
™ Curert Properties o
I &1l Properties o o
[~ FivedPoirt Properties Sl
slgmes) 2 A
4] | _;l LContents I Search Results Hevert | Help | pply |
A

You can configure the Model Explorer to display some or all of the object’s
properties in the Contents pane (see “Customizing the Contents Pane” on
page 9-5). To edit a property, click its value in the Contents or Dialog pane.
The value is replaced by a control that allows you to change the value.

7-15

7 Working with Data

Using MATLAB Commands to Change an Object’s Properties

You can also use MATLAB commands to get and set data object properties. Use
the following dot notation in MATLAB commands and programs to get and set
a data object’s properties:

VALUE = OBJ.PROPERTY;
OBJ.PROPERTY = VALUE;

where OBJ is a variable that references either the object if it is an instance of a
value class or a handle to the object if the object is an instance of a handle class
(see “Handle Versus Value Classes” on page 7-11), PROPERTY is the property’s
name, and VALUE is the property’s value. For example, the following MATLAB
code creates a data type alias object (i.e., an instance of Simulink.AliasType)
and sets its base type to uint8:

gain= Simulink.AliasType;
gain.DataType = 'uint8’;

Use dot notation recursively to get and set the properties of objects that are
values of other object’s properties, e.g.,

gain.RTWInfo.StorageClass = 'ExportedGlobal';

Saving and Loading Data Objects

You can use the MATLAB save command to save data objects in a MAT-file and
the MATLAB load command to restore them to the MATLAB workspace in the
same or a later session. Definitions of the classes of saved objects must exist on
the MATLAB path for them to be restored. If the class of a saved object acquires
new properties after the object is saved, Simulink adds the new properties to
the restored version of the object. If the class loses properties after the object is
saved, Simulink restores only the properties that remain.

Using Data Objects in Simulink Models

You can use data objects in Simulink models as parameters and signals. Using
data objects as parameters and signals allows you to specify simulation and
code generation options on an object-by-object basis.

7-16

Working with Data Obijects

Creating Persistent Data Objects

To create parameter and signal objects that persist across Simulink sessions,
first write a script that creates the objects or create the objects with the
Simulink Data Explorer (see “Subclassing Simulink Data Classes” on

page 7-18) or at the command line and save them in a MAT-file (see “Saving
and Loading Data Objects” on page 7-16). Then use either the script or a load
command as the PreLoadFcn callback routine for the model that uses the
objects. For example, suppose you save the data objects in a file named
data_objects.mat and the model to which they apply is open and active. Then,
entering the following command

set_param(gcs, 'PreLoadFcn', 'load data_objects');

at the MATLAB command line sets load data_objects as the model’s preload
function. This in turn causes the data objects to be loaded into the model
workspace whenever you open the model.

7-17

7 Working with Data

Subclassing Simulink Data Classes

The Simulink Data Class Designer allows you to create subclasses of some
Simulink classes. To define a class with the Data Class Designer, you enter
the package, name, parent class, properties, and other characteristics of the
class in a dialog box. The Data Class Designer then generates P-code that
defines the class. You can also use the Data Class Designer to change the
definitions of classes that it created, for example, to add or remove properties.

Note You can use the Data Class Designer to create custom storage classes.
See the Real-Time Workshop documentation for information on custom
storage classes.

7-18

Subclassing Simulink Data Classes

Creating a Data Object Class
To create a class with the Data Class Designer:

1 Select Data class designer from the Simulink Tools menu.

The Data Class Designer dialog box appears.

<} Simulink Data Class Designer =] E3

rUser-defined package

Fackage name:

|MyData LI e | Copy | Renamel Remoave |
Farent directory (location of @directory):
Id:l\-’\fokk

Classes | Enumerated Propery Types | Custom Storage Classes |

Class name:
--- Mone selected - LI [ey | Sy | Eename | Bermoye |
Derived from: | Mone selected --- LI | Mone selected --- LI

Froperies of this class {inherited properies disabled):

Froperty Mame | Froperty Type | Factary Value {optional) | [ey

H

[Ers/r

Hds

Bermoye

Class initialization {optional): Insert comments o assistin witing class intalization

I(I |>

| |

== Canfirm changesl Reload packagesl

Help | Close |

7-19

7 Working with Data

2 Select the name of the package in which you want to create the class from
the Package name list.

Do not create a class in any of the Simulink built-in packages, i.e., packages
in matlabroot/toolbox/simulink. See “Creating a Class Package” on
page 7-28 for information on creating your own class packages.

3 Click the New button on the Classes pane of the Data Class Designer
dialog box.

4 Enter the name of the new class in the Class name field on the Classes
pane.

Note The name of the new class must be unique in the package to which the
new class belongs. Class names are case sensitive. For example, Simulink
considers Signal and signal to be names of different classes.

5 Press Enter or click the OK button on the Classes pane to create the
specified class in memory.

6 Select a parent class for the new class (see “Specifying a Parent for a Class”
on page 7-22).

7 Define the properties of the new class (see “Defining Class Properties” on
page 7-23).

8 Ifnecessary, create initialization code for the new class (see “Creating
Initialization Code” on page 7-27).

7-20

Subclassing Simulink Data Classes

9 Click Confirm changes.

Simulink displays the Confirm changes pane.

<} Simulink Data Class Designer =] E3

~Packages to write {only includes modified packages)

Package name Parent directory Write all |

MyObjects dWWOrk " |

Add parent directory to MATLAB path: [ves - permanently LI

~Packages to remave

Package name Parent directony | | Remove all I

Remaove selected |

== Back |

Help | Close |

10 Click Write all or select the package containing the new class definition and
click Write selected to save the new class definition.

You can also use the Classes pane to perform the following operations.

Copy a class. To copy a class, select the class in the Classes pane and click
Copy. Simulink creates a copy of the class under a slightly different name. Edit
the name, if desired, click Confirm changes, and click Write all or, after
selecting the appropriate package, Write selected to save the new class.

Rename a class. To rename a class, select the class in the Classes pane and click
Rename. The Class name field becomes editable. Edit the field to reflect the
new name. Save the package containing the renamed class, using the Confirm
changes pane.

Remove a class from a package. To remove a class definition from the currently
selected package, select the class in the Classes pane and click Remove.

7-21

7 Working with Data

Simulink removes the class from the in-memory definition of the class. Save
the package that formerly contained the class.

Specifying a Parent for a Class
To specify a parent for a class:

1 Select the name of the class from the Class name field on the Classes pane.

2 Select the package name of the parent class from the left-hand Derived
from list box.

Class name:
|Signa| LI e | Copy | Rename | Remoave |
Derived from: | Mone selected --- |z| | Mone selected --- LI

Fropetties th!"' Mone selected -—-
Praperty M| ASAP2 —[—

tory Walue {optional)
SimulinkDemos

MyQbjects 4]

Diovwen

d3

Remaove

3 Select the parent class from the right-hand Derived from list.

Class name:
signal LI e | Copy | Rename | Remoave |
Detived from: |Simulink x| mane setected [~
Fropetties ofthis class (inhetited properies disabled): |~ Maone selected -
Farameter
Froperty Name | Froperty Type | Fact
CustomParameter
CustomSignal
CustomRTwinfo

CustomStorageClassAttributes

Remaove |

7-22

Subclassing Simulink Data Classes

Simulink displays properties of the selected class derived from the parent
class in the Properties of this class field.

Class name:
signal LI e | Copy | Rename | Remoave |
Detived from: |Simulink =/ .|signal d|
Froperies of this class {inherited properies disabled):

Froperty Name Froperty Type Factary Yalue {optional) [ey |
RTWinfo hiandle = T

Diovwen

Remaove

d3

Simulink grays the inherited properties to indicate that they cannot be
redefined by the child class.

4 Save the package containing the class.

Defining Class Properties
To add a property to a class:

1 Select the name of the class from the Class name field on the Classes pane.

2 Select the New button next to the Properties of this class field on the
Classes pane.

Simulink creates a property with a default name and value and displays the
property in the Properties of this class field.

Froperies of this class {inherited properies disabled):

Property Mame Praperty Type Factory Value (optional) TS
RTvInfo e [~ 5
T 5

Diovwen

d2

Remaove

7-23

7 Working with Data

3 Enter a name for the new property in the Property Name column.

Note The property name must be unique to the class. Unlike class names,
property names are not case sensitive. For example, Simulink treats value
and value as referring to the same property.

4 Select the data type of the property from the Property Type list.

The list includes built-in property types and any enumerated property types
that you have defined (see “Defining Enumerated Property Types” on
page 7-25).

5 If you want the property to have a default value, enter the default value in
the Factory Value column.

The default value is the value the property has when an instance of the
associated class is created. The initialization code for the class can override
this value (see “Creating Initialization Code” on page 7-27 for more
information).

The following rules apply to entering factory values for properties:

= Do not use quotation marks when entering the value of a string property.
Simulink treats the value that you enter as a literal string.

= The value of a MATLAB array property can be any expression that
evaluates to an array, cell array, structure, or object. Enter the expression
exactly as you would enter the value on the command line, for example,
[0 1; 1 0].Simulink evaluates the expression that you enter to check its
validity. Simulink displays a warning message if evaluating the
expression results in an error. Regardless of whether an evaluation error
occurs, Simulink stores the expression as the factory value of the property.
This is because an expression that is invalid at define time might be valid
at run-time.

= You can enter any expression that evaluates to a numeric value as the
value of a double or int32 property. Simulink evaluates the expression
and stores the result as the property’s factory value.

6 Save the package containing the class with new or changed properties.

7-24

Subclassing Simulink Data Classes

Defining Enumerated Property Types

An enumerated property type is a property type whose value must be one of a
specified set of values, for example, red, blue, or green. An enumerated
property type is valid only in the package that defines it.

To create an enumerated property type:

1 Select the Enumerated Property Types pane of the Data Class Designer.

Classes Enurmerated Property Types | Custom Storage Classes |

Froperty type name:

|—--N0nese|ected--- LI [ey | Sy Eename | Bermoye I

Enumerated strings {one per line):
= ARl |

el

| |

NOTE:
- Enter one enumerated string per line.
- Do not enclose strings inside single gquotes.

2 Click the New button next to the Property type name field.

Simulink creates an enumerated type with a default name.

Froperty type name:

MNewPropertyTypel Ok | Cancel | Benarme | Bermoye |

3 Change the default name in the Property type name field to the desired
name for the property.

The currently selected package defines an enumerated property type and
the type can be referenced only in the package that defines it. However, the
name of the enumerated property type must be globally unique. There
cannot be any other built-in or user-defined enumerated property with the
same name. If you enter the name of an existing built-in or user-defined

7-25

7 Working with Data

7-26

enumerated property for the new property, Simulink displays an error
message.

4 (Click the OK button.

Simulink creates the new property in memory and enables the Enumerated
strings field on the Enumerated Property Types pane.

5 Enter the permissible values for the new property type Enumerated strings
field, one per line.

For example, the following Enumerated strings field shows the permissible
values for an enumerated property type named Color.

Froperty type name:

|Co|0r LI e | Copy | Renamel Removel

Enumerated strings {one per line):

red 1= Apply |
hlue

green

B
il 2

6 Click Apply to save the changes in memory.

7 Click Confirm changes. Then click Write all to save this change.

You can also use the Enumerated Property Type pane to copy, rename, and
remove enumerated property types.

¢ Click the Copy button to copy the currently selected property type. Simulink
creates a new property that has a new name, but has the same value set as
the original property.

¢ Click the Rename button to rename the currently selected property type.

The Property name field becomes editable. Edit the field to reflect the new
name.

¢ Click the Remove button to remove the currently selected property.

Subclassing Simulink Data Classes

Don’t forget to save the package containing the modified enumerated property
type.

Creating Initialization Code

You can specify code to be executed when Simulink creates an instance of a
data object class. To specify initialization code for a class, select the class from
the Class name field of the Data Class Designer and enter the initialization
code in the Class initialization field.

The Data Class Designer inserts the code that you enter in the Class
initialization field in the class instantiation function of the corresponding
class. Simulink invokes this function when it creates an instance of this class.
The class instantiation function has the form

function h = ClassName(varargin)

where h is the handle to the object that is created and varargin is a cell array
that contains the function’s input arguments.

By entering the appropriate code in the Data Class Designer, you can cause
the instantiation function to perform such initialization operations as

® Error checking

¢ Loading information from data files

® Overriding factory values

¢ Initializing properties to user-specified values

For example, suppose you want to let a user initialize the ParamName property
of instances of a class named MyPackage.Parameter. The user does this by
passing the initial value of the ParamName property to the class constructor:

Kp = MyPackage.Parameter('Kp');

The following code in the instantiation function would perform the required
initialization:
switch nargin
case O
% No input arguments - no action
case 1
% One input argument
h.ParamName = varargin{1};

7-27

7 Working with Data

otherwise
warning('Invalid number of input arguments');

end
Creating a Class Package
To create a new package to contain your classes:
1 Click the New button next to the Package name field of the Data Class
Designer.

Fackage name:
Remaove

LI e Copy Rename

|Simu|inkDemos

Farent directory (location of @directory):

Ic:ImatIab‘ttoolbox’tsimulinMSimdemos

Simulink displays a default package name in the Package name field.

Fackage name:

Ok | Cancel | Renamel Bermoye |

2 Edit the Package name field to contain the package name that you want.

Fackage name:

|MyD ata|

LI QK | Cancel | Renamel REROE |

3 Click OK to create the new package in memory.

4 Inthe package Parent directory field, enter the path of the directory where
you want Simulink to create the new package.

Fackage name:

LI e | Copy | Renamel Remaove

|MyData
Farent directory (location of @directory):

Id:‘t\-’\fork

Simulink creates the specified directory, if it does not already exist, when
you save the package to your file system in the succeeding steps.

7-28

Subclassing Simulink Data Classes

5 Click the Confirm changes button on the Data Class Designer.

Simulink displays the Packages to write panel.

~Packages to write {only includes modified packages)

Package name Parent directory Write all |

MyData diOrk \irite selected |

Add parent directory to MATLAB path: |Yes - permanently LI

6 To enable use of this package in the current and future sessions, ensure that
the Add parent directory to MATLAB path box is selected (the default).

This adds the path of the new package’s parent directory to the MATLAB
path.

7 Click Write all or select the new package and click Write selected to save
the new package.

You can also use the Data Class Designer to copy, rename, and remove
packages.

Copying a package. To copy a package, select the package and click the Copy

button next to the Package name field. Simulink creates a copy of the package
under a slightly different name. Edit the new name, if desired, and click OK to
create the package in memory. Then save the package to make it permanent.

Renaming a package. To rename a package, select the package and click the
Rename button next to the Package name field. The field becomes editable.
Edit the field to reflect the new name. Save the renamed package.

Removing a package. To remove a package, select the package and click the
Remove button next to the Package name field to remove the package from
memory. Click the Confirm changes button to display the Packages to
remove panel. Select the package and click Remove selected to remove the
package from your file system or click Remove all to remove all packages that
you have removed from memory from your file system as well.

7-29

7 Working with Data

7-30

Associating User Data with Blocks

You can use the Simulink set_param command to associate your own data with
a block. For example, the following command associates the value of the
variable mydata with the currently selected block.

set_param(gcb, 'UserData', mydata)

The value of mydata can be any MATLAB data type, including arrays,
structures, objects, and Simulink data objects.

Use get_param to retrieve the user data associated with a block.

get_param(gcb, 'UserData')

The following command causes Simulink to save the user data associated with
a block in the model file of the model containing the block.

set_param(gcb, 'UserDataPersistent', 'on');

Note If persistent UserData for a block contains any Simulink data objects,
the directories containing the definitions for the classes of those objects must
be on the MATLAB path when you open the model containing the block.

Modeling with Simulink

The following sections provides tips and guidelines for creating Simulink models.

Modeling Equations (p. 8-2) How to use Simulink blocks to model mathematical
equations.

Avoiding Invalid Loops (p. 8-6) How to avoid creating invalid loops in your model.

Tips for Building Models (p. 8-8) Tips on creating efficient, accurate models of a dynamic

system.

8 Modeling with Simulink

Modeling Equations

8-2

One of the most confusing issues for new Simulink users is how to model
equations. Here are some examples that might improve your understanding of
how to model equations.

Converting Celsius to Fahrenheit
To model the equation that converts Celsius temperature to Fahrenheit

Tp = 9/5(Tc) + 32
First, consider the blocks needed to build the model:
¢ A Ramp block to input the temperature signal, from the Sources library
¢ A Constant block to define a constant of 32, also from the Sources library
¢ A Gain block to multiply the input signal by 9/5, from the Math library

¢ A Sum block to add the two quantities, also from the Math library
¢ A Scope block to display the output, from the Sinks library

Next, gather the blocks into your model window.

> f]
Famp
Sum Scope

Constant

3ain

Assign parameter values to the Gain and Constant blocks by opening
(double-clicking) each block and entering the appropriate value. Then, click the
Close button to apply the value and close the dialog box.

Now, connect the blocks.

L——sps——fr]
Ramp Gain *
Sum Scope

Constant

¥

Modeling Equations

The Ramp block inputs Celsius temperature. Open that block and change the
Initial output parameter to 0. The Gain block multiplies that temperature by
the constant 9/5. The Sum block adds the value 32 to the result and outputs the
Fahrenheit temperature.

Open the Scope block to view the output. Now, choose Start from the
Simulation menu to run the simulation. The simulation runs for 10 seconds.

Modeling a Continuous System
To model the differential equation

x'(t) = —2x(¢) + u(t)

where u(t) is a square wave with an amplitude of 1 and a frequency of 1
rad/sec. The Integrator block integrates its input x' to produce x. Other blocks
needed in this model include a Gain block and a Sum block. To generate a
square wave, use a Signal Generator block and select the Square Wave form
but change the default units to radians/sec. Again, view the output using a
Scope block. Gather the blocks and define the gain.

In this model, to reverse the direction of the Gain block, select the block, then
use the Flip Block command from the Format menu. To create the branch line
from the output of the Integrator block to the Gain block, hold down the Ctrl
key while drawing the line. For more information, see “Drawing a Branch Line”
on page 4-12. Now you can connect all the blocks.

oooo u T
aa L o 1 ¥
ol » 1]
. Ll
Signal s
Ganerator Sum Integrator Scope

Gain

An important concept in this model is the loop that includes the Sum block, the
Integrator block, and the Gain block. In this equation, x is the output of the
Integrator block. It is also the input to the blocks that compute x', on which it
is based. This relationship is implemented using a loop.

8-3

8 Modeling with Simulink

8-4

The Scope displays x at each time step. For a simulation lasting 10 seconds, the
output looks like this:

<) Scope =] B3
lem oo ABB B L 5

The equation you modeled in this example can also be expressed as a transfer
function. The model uses the Transfer Fcn block, which accepts u as input and
outputs x. So, the block implements x/u. If you substitute sx for x’ in the above
equation, you get

sx = —2x+u
Solving for x gives

x =u/(s+2)
or,

x/u = 1/(s+2)

The Transfer Fen block uses parameters to specify the numerator and
denominator coefficients. In this case, the numerator is 1 and the denominator

Modeling Equations

is s+2. Specify both terms as vectors of coefficients of successively decreasing
powers of s.

In this case the numerator is [1] (or just 1) and the denominator is [1 2].

oooo
[afm)}

u

1

]

Signal
Fenerator

el —
Ll

=2

Transter Fon

Y

Scope

The results of this simulation are identical to those of the previous model.

8-5

8 Modeling with Simulink

Avoiding Invalid Loops

8-6

Simulink allows you to connect the output of a block directly or indirectly (i.e.,
via other blocks) to its input, thereby, creating a loop. Loops can be very useful.
For example, you can use loops to solve differential equations diagramatically
(see “Modeling a Continuous System” on page 8-3) or model feedback control
systems. However, it is also possible to create loops that cannot be simulated.
Common types of invalid loops include:

® Loops that create invalid function-call connections or an attempt to modify
the input/output arguments of a function call

¢ Self-triggering subsystems and loops containing non-latched triggered
subsystems

¢ Loops containing action subsystems

The Subsystem Examples block library in the Ports & Subsystems library
contains models that illustrates examples of valid and invalid loops involving
triggered and function-call subsystems. Examples of invalid loops include the
following models:

® simulink/Ports&Subsystems/sl_subsys_semantics/Triggered
subsystem/sl_subsys_trigerri

® simulink/Ports&Subsystems/sl_subsys_semantics/Triggered
subsystem/sl_subsys_trigerr2

® simulink/Ports&Subsystems/sl_subsys_semantics/Function-call
systems/sl_subsys_fcncallerr3

You might find it useful to study these examples to avoid creating invalid loops
in your own models.

Avoiding Invalid Loops

Detecting Invalid Loops

To detect whether your model contains invalid loops, select Update diagram
from the model’s Edit menu. If the model contains invalid loops, Simulink
highlights the loops

H
[+ H+

Dizcrete Pulse
Generator k.

r ¥

nifout nifout
trigsz1 A trigssZ
é}:
B

and displays an error message in the Simulation Diagnostics Viewer.

8 Modeling with Simulink

Tips for Building Models

8-8

Here are some model-building hints you might find useful:

® Memory issues
In general, the more memory, the better Simulink performs.
¢ Using hierarchy

More complex models often benefit from adding the hierarchy of subsystems
to the model. Grouping blocks simplifies the top level of the model and can
make it easier to read and understand the model. For more information, see
“Creating Subsystems” on page 4-20. The Model Browser provides useful
information about complex models (see “The Model Browser” on page 9-22).

¢ Cleaning up models

Well organized and documented models are easier to read and understand.
Signal labels and model annotations can help describe what is happening in
a model. For more information, see “Signal Names” on page 6-38 and
“Annotating Diagrams” on page 4-16.

® Modeling strategies

If several of your models tend to use the same blocks, you might find it easier
to save these blocks in a model. Then, when you build new models, just open
this model and copy the commonly used blocks from it. You can create a block
library by placing a collection of blocks into a system and saving the system.
You can then access the system by typing its name in the MATLAB command
window.

Generally, when building a model, design it first on paper, then build it using
the computer. Then, when you start putting the blocks together into a model,
add the blocks to the model window before adding the lines that connect
them. This way, you can reduce how often you need to open block libraries.

Exploring, Searching, and
Browsing Models

The following sections describe tools that enable you to quickly navigate to any point in a model and
find and modify objects in a model.

The Model Explorer (p. 9-2) How to use the Model Explorer to find, display, and
modify model contents.

The Finder (p. 9-16) How to use the Simulink Finder to locate blocks, states,
and other objects in a model, using search criteria that
you specify.

The Model Browser (p. 9-22) How to navigate quickly to any point in a model’s block
hierarchy.

9 Exploring, Searching, and Browsing Models

9-2

The Model Explorer

The Model Explorer allows you to quickly locate, view, and change elements of
a Simulink model or Stateflow chart. To display the Model Explorer, select
Model Explorer from the Simulink View menu or select an object in the block
diagram and select Explore from its context menu. The Model Explorer
appears.

Main toolbar Search toolbar

& Model Explorer _I_I- aj,
File Edit Wiew Tools Add Help
D@ imax MM €7 @[@D 45
JJSearch: Iby Property Yalug LI Froperty: |<An_n,| Property: A/ LI |= LI | Search
Model Hierarchy Contents of: wdp Model Properties
E--E‘Simulink Raoat e I BlockType [ET I ‘wiorkspace I Callbacks I Hiztory I Description I
. EMATLAB ok space ||%4 Configuration [Active) -
;‘%”Fm fon Model Information for: vdp
E‘IMU'E Infa SubSystem Source file: \\batD8\Adas\nightlymatlabhtoolboxhsimulinl
o W Model Workspace - 'sf_c FoMare Infa3 SubSystem Last Saved: Fri fug 16 16:05:49 2000
%Eonfiguration [Active] ElMu Gain Created On: FriAug 18 16:03:19 2000
E’Engine ElMus Wus Iz Modified: ve:
E’Threshold Calculation ElProduct Praduct Model Yersion: 1.1
ﬂUserlnputs ElScope Seope
FPEwericle Elsum Sum
- R shift_logic = Integratar
--E’transmission e Intagrator
Elouw Outport
Elouw2 Outport i | _4‘
4« | 2l | a Help | Apply
Model Hierarchy pane Contents pane Dialog pane

The Model Explorer includes the following components:

® Model Hierarchy pane (see “Model Hierarchy Pane” on page 9-3)
¢ Contents pane (see “Contents Pane” on page 9-4)

¢ Dialog pane (see “Dialog Pane” on page 9-9)

® Main toolbar (see “Main Toolbar” on page 9-9)

¢ Search bar (see “Search Bar” on page 9-11)

The Model Explorer

You can use the Model Explorer’s View menu to hide the Dialog pane and the
toolbars, thereby making more room for the other panes.

Model Hierarchy Pane
The Model Hierarchy pane displays a tree-structured view of the Simulink
model hierarchy.

Model Hierarchy |
=[] Simulink Root

----%Eonfiguration
----E’Engine
----E’Threshold Calculation
----E’User Inputs

- [Fa]vehicle

= B shift_lagic

--El gear_state
[#-=] selection_state
I'_—'I--Eltransmission
5----2’T0rque[ﬁonverter

E----E.Itransmissionratio

Simulink Root

The first node in the view represents the Simulink root. Expanding the root
node displays nodes representing the MATLAB workspace (Simulink’s base
workspace) and each model and library loaded in the current session.

Base Workspace

This node represents the MATLAB workspace. The MATLAB workspace is the
base workspace for Simulink models. Variables defined in this workspace are
visible to all open Simulink models, i.e., to all models whose nodes appear
beneath the Base Workspace node in the Model Hierarchy pane.

Model Nodes

Expanding a model node displays nodes representing the model’s configuration
sets (see “Configuration Sets” on page 10-26), top-level subsystems, model
references, and Stateflow charts. Expanding a node representing a subsystem
displays its subsystems, if any. Expanding a node representing a Stateflow
chart displays the chart’s top-level states. Expanding a node representing a
state shows its substates.

9-3

9 Exploring, Searching, and Browsing Models

94

Displaying Node Contents

To display the contents of an object displayed in the Model Hierarchy pane
(e.g., a model or configuration set) in the adjacent Contents pane, select the
object. To open a graphical object (e.g., a model, subsystem, or chart) in an
editor window, right-click the object. A context menu appears. Select Open
from the context menu. To open an object’s properties dialog, select Properties
from the object’s context menu or from the Edit menu. See “Configuration Sets”
on page 10-26 for information on using the Model Hierarchy pane to delete,
move, and copy configuration sets from one model to another.

Expanding Model References

To expand a node representing a model reference (see “Referencing Models” on
page 4-53), you must first open the referenced model. To do this, right-click on
the node to display its context menu, then select Open Model from the menu.
Simulink opens the model to which the reference refers, displays a node for it
in the Model Hierarchy pane, and make all references to the model
expandable. You cannot edit the contents of a reference node, however. To edit
the referenced model, you must expand its node.

Contents Pane

The Contents pane displays a tabular view of the contents of the object
selected in the Model Hierarchy pane or the results of a search operation (see
“Search Bar” on page 9-11).

Model Hierarchy | Contents of: sf_car/Engine
=1 E5]Simulink Root T BlockType
ﬁ MATLAR Woarkspace [Sh Inpart
--Evdp [l thrattle Inpart
E--Esf_car [l Integrator Integratar
----%Eonfiguration El5um Sum
" [l enginetorque LookupZD
----E’Threshold Calculation =1 engine + impellerinertia Gain
----E’User Inputs ElNe Outport
- [Fa]vehicle
= B shift_logic

--El gear_state

[#-=] selection_state

I'_—'I--Eltransmission
é----gTorqueEUnverter

E----E.Itransmissionratio

The Model Explorer

The table rows correspond to objects (e.g., blocks or states); the table columns,
to object properties (e.g., name and type). The table cells display the values of
the properties of the objects contained by the object selected in the Model
Hierarchy pane.

The objects and properties displayed in the Contents pane depend on the type
of object (e.g., subsystem, chart, or configuration set) selected in the Model
Hierarchy pane. For example, if the object selected in the Model Hierarchy
pane is a model or subsystem, the Contents pane by default displays the name
and type of the top-level blocks contained by that model or subsystem. If the
selected object is a Stateflow chart or state, the Contents pane by default
shows the name, scope, and other properties of the events and data that make
up the chart or state.

Customizing the Contents Pane

The Model Explorer’s View menu allows you to control the type of objects and
properties displayed in the Contents pane.

¢ To display only object names in the Contents pane, uncheck the Show
Properties in List View item on the View menu.

¢ To customize the set or properties displayed in the Contents pane, select
Customize Contents from the View menu or click the Customize Contents
button on the Model Explorer’s main toolbar (see “Main Toolbar” on
page 9-9). The Customize Contents pane appears. Use the pane to select the
properties you want the Contents pane to display.

¢ To specify the types of subsystem or chart contents displayed in the
Contents pane, select List View Options from the View menu. A menu of
object types appears. Check the types that you want to be displayed (e.g.,
Blocks and Named Signals/Connections or All Simulink Objects for
models and subsystems).

Reordering the Contents Pane

The Contents pane by default displays its contents in ascending order by
name. To order the contents in ascending order by any other displayed
property, click the head of the column that displays the property. To change the
order from ascending to descending, or vice versa, click the head of the property
column that determines the current order.

9-5

9 Exploring, Searching, and Browsing Models

9-6

Customize Contents Pane

The Customize Contents pane allows you to select the properties that the
Contents pane displays for the object selected in the Model Hierarchy pane.

When visible, the pane appears in the lower left corner of the Model Explorer
window.

E& Model Explorer
File Edit Wiew Tools Add Help

(D[s max BENES: F O Dm 45
JJSearch: Iby Property Value 'l Propety: |<An_l,l Property:

Model Hierarchy Contents of: wdp
E--E‘Simulink Root Mame I BlockType | Samplel Sp|mer
ﬁ.. MATLAB Workspace %Eonfiguration [Active]

--Esf_car

4

Customize Contents
-- [V Curent Properties

! =1s i i
--|7 Suggested Properties EIS::ﬂnP 1 Customize Contents pane
-- [&l Properties Bl
-1 Fized Point Properties 12
/] I | _,I Elouw

A splitter divides the Customize Contents pane from the Model Hierarchy

pane above it. Drag the splitter up or down to adjust the relative size of the two
panes.

The Customize Contents pane contains a tree-structured property list. The
list’s top-level nodes group object properties into the following categories:
® Current Properties
Properties that the Contents pane currently displays.
® Suggested Properties

Properties that Simulink suggests that the Contents pane should display,

based on the type of object selected in the Model Hierarchy pane and the
contents of the selected object.

® A11 Properties

Properties of the contents of all models displayed in the Model Explorer thus
far in this session.

The Model Explorer

® Fixed Point Properties
Fixed-point properties of blocks.

By default, the properties currently displayed in the Contents pane are the
suggested properties for the currently selected model. The Customize
Contents pane allows you to perform the following customizations:

® To display additional properties of the selected model, expand the A1l
Properties node, if necessary, and check the desired properties.

® To delete some but not all properties from the Contents pane, expand the
Current Properties node, if necessary, and uncheck the properties that you
do not want to appear in the Contents pane.

¢ To delete all properties from the Contents pane (except the selected object’s
name), uncheck Current Properties.

¢ To restore the properties suggested for the current model, uncheck Current
Properties and check Suggested Properties.

¢ To add or remove fixed-point block properties from the Contents pane, check
or uncheck Fixed Point Properties.

9-7

9 Exploring, Searching, and Browsing Models

9-8

Marking Nonexistant Properties

Some of the properties that the Contents pane is configured to display may not
apply to all the objects currently listed in the Contents pane. You can configure
the Model Explorer to indicate the inapplicable properties.

To do this, select Mark Nonexistent Properties from the Model Explorer’s
View menu. The Model Explorer now displays dashes for the values of
properties that do not apply to the objects displayed in the Contents pane.

& Model Explorer . : =] 3]
File Edit View Tools Add Help
~ " " -

D@ smaxEmE%f0 @0 4+R]sxraza
JJSearch: |hy Block Type ;I Type: |Ennstant ;I Search
tadel Hierarchy ;I Contents of: F14/Cantraller

E‘"E:H“ I Narme I BlockTupe | MaskType | SampleTime I F‘ortl lconDisplay | Partia
ﬁ ModelWorkspace I Alpha-sensor Low-pass Filker
~HgConfiguration [Active] 1 Pitch Rate Lead Filter
@ Code far f14 =1 Propartional plus integral compensator

- Advice for 114 I Stick Prefier
Aircraft Dynarnics Mo =1 alpha lrad)

i 1 Elevator Command [deg)
;----gDryden Wfind Gust Mi 5 = Gan

2 Port number -

1 Port number -

1
A
= A
ﬂ—l L } El Ganz 1
Customize Cantents I Gain3 R
v Current Properties I qlrad/sec) A 3 Port number -1
|_ All Properties 21 stick Input (in) -1 1 Port number -1
1T Fived-Paint Prapetties [Sum -
1 Sumt 1
1 Sumz Rl
4 |
h] I I _»I LContents I Search Results I

Changing Property Values

You can change modifiable properties displayed in the Contents pane (e.g., a
block’s name) by editing the displayed value. To edit a displayed value, first
select the row that contains it. Then click the value. An edit control replaces
the displayed value (e.g., an edit field for text values or a pull-down list for a
range of values). Use the edit control to change the value of the selected
property.

To assign the same property value to multiple objects displayed in the
Contents pane, select the objects and then change one of the selected objects

The Model Explorer

to have the new property value. The Model Explorer assigns the new property
value to the other selected objects as well.

Dialog Pane

The Dialog pane displays the dialog view of the object selected in the Contents
pane, e.g., a block or a configuration subset. You can use the Dialog pane to
view and change the selected object’s properties. To show or hide this pane,
select the Show Dialog View menu from the Model Explorer’s View menu or
the Show Dialog View button on the Model Explorer’s main toolbar (see “Main
Toolbar” on page 9-9).

Main Toolbar

The Model Explorer’s main toolbar appears near the top of the Model Explorer
window under the Model Explorer’s menu.

& Model Explorer ;IEI

File Edit Wiew Tools Add Help

D[s max BENELHFO[E@E 45 -

J_ISE&TChZ Ib-'r' Froperty ' alue LI Property: |<An_p Propertys) N\ e)
odel Higrarchy IEnnrawL g
- [EF]Simuiink Roat
ﬁ MaT
- Main toolbar

The toolbar contains buttons that select commonly used Model Explorer
commands:

Button Usage

[

Create a new model.

Open an existing model.

W

Cut the objects (e.g., variables) selected in the Contents pane

'ZI'!'I:' from the object (e.g., a workspace) selected in the Model
Hierarchy pane. Save a copy of the object on the system
clipboard.

9-9

9 Exploring, Searching, and Browsing Models

9-10

Usage

Copy the objects selected in the Contents pane to the system
clipboard.

Paste objects from the clipboard into the object selected in the
Model Explorer’s Model Hierarchy pane.

Delete the objects selected in the Contents pane from the
object selected in the Model Hierarchy pane.

Add a MATLAB variable to the workspace selected in the
Model Hierarchy pane.

Add a Simulink.Parameter object to the workspace selected in
the Model Hierarchy pane.

Add a Simulink.Signal object to the workspace selected in the
Model Hierarchy pane.

Add a configuration set to the model selected in the Model
Hierarchy pane.

Add a Stateflow datum to the machine or chart selected in the
Model Hierarchy pane.

Add a Stateflow event to the machine or chart selected in the
Model Hierarchy pane or to the state selected in the Model
Explorer.

Add a code generation target to the model selected in the
Model Hierarchy pane.

Turn the Model Explorer’s Dialog pane on or off.

Customize the Model Explorer’s Contents pane.

The Model Explorer

Button Usage

‘} Bring the MATLAB desktop to the front.

H Display the Simulink Library Browser.

To show or hide the main toolbar, select Main Toolbar from the Model
Explorer’s View menu.

Search Bar
The Model Explorer’s search bar allows you to select, configure, and initiate

searches of the object selected in the Model Hierarchy pane. It appears at the

top of the Model Explorer window.

Search bar

E& Model Explorer =131 x|
File Edit Wiew Tools Add Help
(D@ smax EME%HH O 0045
JJSearch: Iby Property Yalug LI Froperty: |<An_n,| Fropetys & LI |= LI | Search = ‘
Model Hierarchy Contents of: 14
E--E‘Simulink Foot N ame I BlockType I SampleTimeI Treatdattomicl it ek
E MATLAB Workspace %Eonfiguration [Auctive)
"EVdD Elu -1
"Eﬂ 4 Elactuator Model
E’Aircraﬂ Dynamics Model off
Eléngle of Attack 1]
E’Eontroller off
E’Dr}lden Wwind Gust Models off
ElGain -1
4 I I _’I_ AT el 1 LI
A

To show or hide the search bar, check or uncheck Search Bar in the Model
Explorer’s View menu.

9-11

9 Exploring, Searching, and Browsing Models

9-12

The search bar includes the following controls:

Select search type. Specify search criteria. Start search.
v i T v
Search: [by Propertyvalue | Property: | <any Property> == =l [E] Search>
1
Select search options. Select a previous search.
Search Type

Specifies the type of search to be performed. Options include:
® by Property Value

Search for objects whose property matches a specified value. Selecting this
search type causes the search bar to display controls that allow you to specify
the name of the property, the value to be matched, and the type of match
(equals, less than, greater than, etc.).

® by Property Name

Search for objects that have a specified property. Selecting this search type
causes the search bar to display a control that allows you to specify the target
property’s name by selecting from a list of properties that objects in the
search domain can have.

® by Block Type

Search for blocks of a specified block type. Selecting this search type causes
the search bar to display a block type list control that allows you to select the
target block type from the types contained by the currently selected model.

e for Library Links
Searches for library links in the current model.
® py Class
Searches for Simulink objects of a specified class.
® for Model References
Searches a model for references to other models.
® for Fixed Point
Searches a model for all blocks that support fixed-point computations.

The Model Explorer

® by Dialog Prompt

Searches a model for all objects whose dialogs contain a specified prompt.
® py String

Searches a model for all objects in which a specified string occurs.

Search Options
Specifies options that apply to the current search. The options include:

® Search All Descendants
Search the descendants of the currently selected object as well as the
selected object itself.

® | ook Inside Masked Subsystems
Search includes masked subsystems.
® | ook Inside Linked Subsystems
Search includes linked subsystems.
® Match Whole String

Do not allow partial string matches, e.g., do not allow sub to match
substring.

® Match Case

Consider case when matching strings, e.g., Gain does not match gain.
® Regular Expression

The Model Explorer considers a string to be matched as a regular expression.
® Refine Search Uses Boolean 'AND'

When refining a search, search for objects that meet both the original and the
new search criteria.

® Refine Search Uses Boolean 'OR'

When refining a search, search for objects that meet either the original or the
new search criteria. (Not yet implemented.)

® Clear Search History
Not yet implemented.

Search Button

Initiates the search specified by the current settings of the search bar on the
object selected in the Model Explorer’s Model Hierarchy pane. The Model

9-13

9 Exploring, Searching, and Browsing Models

Explorer displays the results of the search in its Contents pane and enters
search mode.

E& Model Explorer =131 x|
File Edit Wiew Tools Add Help

D[s maxX ENELHFO D@ 45
JJSearch: Iby Elock Type LI Type: IIntegrator LI % Refine =
M0d9| Hierarchy Search found 2 objects: Dane Searchin |
E--E‘Simulink Foot where Block Type iz Integrator 2
- WMATLAB Workspace Add o Favorites. . [TBD]l
--Evdp Search all descendants: Yes

H Match whale string: Mo
- Tsf_car Match caze: No

Fegular expreszion: Yes

Contents of wdp

EI %2 wdp

4 | e | 2|
4

In search mode, you can perform the following tasks:

¢ Refine the previous search.

In search mode, a Refine button replaces the Search button on the search
bar. To refine the search results, use the search bar to define new search
criteria and then click the Refine button. The Model Explorer searches for
objects that match the previous search criteria and/or the new criteria,
depending on the setting of the refine search options.

¢ Apply the previous search to another object.

To apply the previous search to another object, select the object in the Model
Explorer’s Model Hierarchy pane. The Model Explorer repeats the search
on the new object and displays the results.

¢ Edit search results.
In search mode, you can edit the results displayed in the Contents pane just
as you can edit them in explore mode. For example, to change all objects

found by a search to have the same property value, select the objects in the
Contents pane and change one of them to have the new property value.

To exit search mode, click the Done Searching button at the top of the search
results.

9-14

The Model Explorer

Search History

The down arrow control adjacent to the Search button displays a list of
searches previously executed in the current Simulink session. To reexecute a
search, select it from the history and click the Search button. (Note this feature
is not yet implemented.)

9-15

9 Exploring, Searching, and Browsing Models

The Finder

9-16

The Finder locates blocks, signals, states, or other objects in a model. To
display the Finder, select Find from the Edit menu. The Find dialog box
appears.

) Find : vdp =] B3
—Filteroptions —_Search criteria
: Find |
Look for |Se|ec| Basic | Advanced |
B simulink objects & Find what Help |
W stateflow objects @ | =] F— |
b

I= | Bearch biock dialoy parameters:

™ Match case IContains wiord vI

—Startin system

™ Lookinside masked systems

™ Lookinside linked systems |vdp LI

Use the Filter options (see “Filter Options” on page 9-18) and Search criteria
(see “Search Criteria” on page 9-18) panels to specify the characteristics of the
object you want to find. Next, if you have more than one system or subsystem
open, select the system or subsystem where you want the search to begin from
the Start in system list. Finally, click the Find button. Simulink searches the
selected system for objects that meet the criteria you have specified.

The Finder

Any objects that satisfy the criteria appear in the results panel at the bottom

of the dialog box.

) Find : vdp
—Filter options

Look for |Se|ec|
B simulink ohjects
B stateflow objects W

™ Lookinside masked systems

—Search criteria

IS[=] E3

Basic | Advanced |
Find what:

|ru1u| d|

™ Search block dialog parameters

[~ Match case

I~
IContains watd |

—Startin system

Find I

Help

[w |
Cancel |

Found 2 object(=)

™ Lookinside linked systems |vdp LI
Type | MName | FParent | Source | Destination
0 Black My wdp
0 Black P wdp

You can display an object by double-clicking its entry in the search results list.
Simulink opens the system or subsystem that contains the object (if necessary)
and highlights and selects the object. To sort the results list, click any of the
buttons at the top of each column. For example, to sort the results by object
type, click the Type button. Clicking a button once sorts the list in ascending

order, clicking it twice sorts it in descending order. To display an object’s
parameters or properties, select the object in the list. Then press the right

mouse button and select Parameter or Properties from the resulting context

menu.

9-17

9 Exploring, Searching, and Browsing Models

9-18

Filter Options

The Filter options panel allows you to specify the kinds of objects to look for
and where to search for them.

—Filter options
Look for | Select

B Simulink objects 2
|- & Annotations I~
|— & Blocks I~
L& Signals I~

B Stateflow objects < |l Obied type list
|- & States I~
|— & Transitions I~
|- & Junctions I~
|— & Events I~
- & Data I~
L& Targets I~

1 |]

™ Lookinside masked systems

™ Lookinside linked systems

Object type list

The object type list lists the types of objects that Simulink can find. By clearing
a type, you can exclude it from the Finder’s search.

Look inside masked subsystem

Selecting this option causes Simulink to look for objects inside masked
subsystems.

Look inside linked systems

Selecting this option causes Simulink to look for objects inside subsystems
linked to libraries.

Search Criteria

The Search criteria panel allows you to specify the criteria that objects must
meet to satisfy your search request.

The Finder

Basic

The Basic panel allows you to search for an object whose name and, optionally,
dialog parameters match a specified text string. Enter the search text in the
panel’s Find what field. To display previous search text, select the drop-down
list button next to the Find what field. To reenter text, click it in the drop-down
list. Select Search block dialog parameters if you want dialog parameters to
be included in the search.

Advanced

The Advanced panel allows you to specify a set of as many as seven properties
that an object must have to satisfy your search request.

Basic Advanced |

Select Froperty Value
{nane)
{nane)
{nane)
{nane)
{nane)
{nane)
{nane)

e e o

LHENENENENENE

To specify a property, enter its name in one of the cells in the Property column
of the Advanced pane or select the property from the cell’s property list. To
display the list, select the down arrow button next to the cell. Next enter the
value of the property in the Value column next to the property name. When you
enter a property name, the Finder checks the check box next to the property
name in the Select column. This indicates that the property is to be included
in the search. If you want to exclude the property, clear the check box.

Match case

Select this option if you want Simulink to consider case when matching search
text against the value of an object property.

Other match options

Next to the Match case option is a list that specifies other match options that
you can select.

9-19

9 Exploring, Searching, and Browsing Models

® Match whole word
Specifies a match if the property value and the search text are identical
except possibly for case.

® Contains word
Specifies a match if a property value includes the search text.

® Regular expression

Specifies that the search text should be treated as a regular expression when
matched against property values. The following characters have special
meanings when they appear in a regular expression.

Character Meaning

A

Matches start of string.
$ Matches end of string.
Matches any character.

\ Escape character. Causes the next character to have its
ordinary meaning. For example, the regular expression \. .
matches .a and .2 and any other two-character string that
begins with a period.

Matches zero or more instances of the preceding character.
For example, ba* matches b, ba, baa, etc.

+ Matches one or more instances of the preceding character.
For example, ba+ matches ba, baa, etc.

[] Indicates a set of characters that can match the current
character. A hyphen can be used to indicate a range of
characters. For example, [a-zA-Z0-9]+ matches foo_bar1
but not foo$bar. A * indicates a match when the current
character is not one of the following characters. For
example, [*0-9] matches any character that is not a digit.

\w Matches a word character (same as [a-z_A-Z0-9]).

\W Matches a nonword character (same as [“a-z_A-Z0-9]).

9-20

The Finder

Character Meaning

\d Matches a digit (same as [0-9]).

\D Matches a nondigit (same as [*0-9]).

\'s Matches white space (same as [\t\r\n\f]).

\S Matches nonwhite space (same as [~ \t\r\n\f]).
\<WORD\> Matches WORD where WORD is any string of word characters

surrounded by white space.

9-21

9 Exploring, Searching, and Browsing Models

The Model Browser

9-22

The Model Browser enables you to

¢ Navigate a model hierarchically

¢ Open systems in a model

e Determine the blocks contained in a model

The browser operates differently on Microsoft Windows and UNIX platforms.

Using the Model Browser on Windows
To display the Model Browser, select Model Browser from the Simulink View

menu.

E!engine
File Edit “iew Simulation

Format Tools

Help

[(O] x]

D|@H§I%E|DQ|H|> 5 [Nomal 4|

odel Browser

(= El engine

] Compression
y Dirag Torque
2 Thiottle & Marifold
. 2] Vehicle Dynamics
y walve timing

Fieady

2l x|

e X imu lat

choose Start from

]

menu o rin

7

thottle

¥

Throttle Ang.

Mass Airflow Rate

Engine Timing Model in Si1,
A Demonstration of Triggered .

¥
t

rmass (k)

mmass (k+1)

trigger

Compession

idegmees) Engine Speed, M
Thottle & Manifokl

V=

[0z

The model window splits into two panes. The left pane displays the browser, a
tree-structured view of the block diagram displayed in the right pane.

The Model Browser

Note The Browser initially visible preference causes Simulink to open
models by default in the Model Browser. To set this preference, select
Preferences from the Simulink File menu.

The top entry in the tree view corresponds to your model. A button next to the
model name allows you to expand or contract the tree view. The expanded view
shows the model’s subsystems. A button next to a subsystem indicates that the
subsystem itself contains subsystems. You can use the button to list the
subsystem’s children. To view the block diagram of the model or any subsystem
displayed in the tree view, select the subsystem. You can use either the mouse
or the keyboard to navigate quickly to any subsystem in the tree view.

Navigating with the Mouse

Click any subsystem visible in the tree view to select it. Click the + button next
to any subsystem to list the subsystems that it contains. Click the button again
to contract the entry.

Navigating with the Keyboard

Use the up/down arrows to move the current selection up or down the tree view.
Use the left/right arrow or +/- keys on your numeric keypad to expand an entry
that contains subsystems.

Showing Library Links

The Model Browser can include or omit library links from the tree view of a
model. Use the Simulink Preferences dialog box to specify whether to display
library links by default. To toggle display of library links, select Show library

links from the Model browser options submenu of the Simulink View menu.

Showing Masked Subsystems

The Model Browser can include or omit masked subsystems from the tree view.
If the tree view includes masked subsystems, selecting a masked subsystem in
the tree view displays its block diagram in the diagram view. Use the Simulink
Preferences dialog box to specify whether to display masked subsystems by
default. To toggle display of masked subsystems, select Look under masks
from the Model browser options submenu of the Simulink View menu.

9-23

9 Exploring, Searching, and Browsing Models

9-24

Using the Model Browser on UNIX

To open the Model Browser, select Show Browser from the File menu. The
Model Browser window appears, displaying information about the current
model. This figure shows the Model Browser window displaying the contents of
the clutch system.

E] “clutch" Browser A= &3

File Options

Ersak Apart Detecticn B

Current system an

Break Apart Detect
Friction Model
Locked

Break-Apart Flag
Clutch Pedal
Engine Torgue

H i + Lockup Detection Friction Model i
subsystems it contains e Lk Fricti - H Blocks in the
Fequi=ite Frictiorn Locked Flag Sdeﬂedsyﬂem

Tnlocked Lockup Detection

Lockup FSHM

Lockup Flag
Logic =
4 2 - o
_,|_v| BlockType: SubSystem
™ Look Under [f]azk Dialog Open System
™ Expand [L]ibrary Links ek nte System
Help | Frint... Cloze

Contents of the Browser Window
The Model Browser window consists of

¢ The systems list. The list on the left contains the current system and the
subsystems it contains, with the current system selected.

¢ The blocks list. The list on the right contains the names of blocks in the
selected system. Initially, this window displays blocks in the top-level
system.

¢ The File menu, which contains the Print, Close Model, and Close Browser
menu items.

¢ The Options menu, which contains the menu items Open System, Look
Into System, Display Alphabetical/Hierarchical List, Expand All, Look
Under Mask Dialog, and Expand Library Links.

¢ The Options check boxes and buttons Look Under [M]ask Dialog and
Expand [Llibrary Links check boxes, and Open System and Look Into
System buttons. By default, Simulink does not display the contents of

The Model Browser

masked blocks and blocks that are library links. These check boxes enable
you to override the default.

¢ The block type of the selected block.
¢ Dialog box buttons Help, Print, and Close.

Interpreting List Contents

Simulink identifies masked blocks, reference blocks, blocks with defined
OpenFcn parameters, and systems that contain subsystems using these
symbols before a block or system name:

® A plus sign (+) before a system name in the systems list indicates that the
system is expandable, which means that it has systems beneath it.
Double-click the system name to expand the list and display its contents in
the blocks list. When a system is expanded, a minus sign (-) appears before
its name.

¢ [M] indicates that the block is masked, having either a mask dialog box or a
mask workspace. For more information about masking, see Chapter 12,
“Creating Masked Subsystems.”

¢ [L] indicates that the block is a reference block. For more information, see
“Connecting Blocks” on page 4-9.

¢ [O] indicates that an open function (OpenFcn) callback is defined for the
block. For more information about block callbacks, see “Using Callback
Routines” on page 4-90.

¢ [S] indicates that the system is a Stateflow block.

Opening a System
You can open any block or system whose name appears in the blocks list. To
open a system:

1 In the systems list, select by single-clicking the name of the parent system
that contains the system you want to open. The parent system’s contents
appear in the blocks list.

2 Depending on whether the system is masked, linked to a library block, or
has an open function callback, you open it as follows:

= If the system has no symbol to its left, double-click its name or select its
name and click the Open System button.

9-25

9 Exploring, Searching, and Browsing Models

9-26

= Ifthe system has an [M] or [O] before its name, select the system name and
click the Look Into System button.

Looking into a Masked System or a Linked Block

By default, the Model Browser considers masked systems (identified by [M])
and linked blocks (identified by [L]) as blocks and not subsystems. If you click
Open System while a masked system or linked block is selected, the Model
Browser displays the system or block’s dialog box (Open System works the
same way as double-clicking the block in a block diagram). Similarly, if the
block’s OpenFcn callback parameter is defined, clicking Open System while
that block is selected executes the callback function.

You can direct the Model Browser to look beyond the dialog box or callback
function by selecting the block in the blocks list, then clicking Look Into
System. The Model Browser displays the underlying system or block.

Displaying List Contents Alphabetically

By default, the systems list indicates the hierarchy of the model. Systems that
contain systems are preceded with a plus sign (+). When those systems are
expanded, the Model Browser displays a minus sign (-) before their names. To
display systems alphabetically, select the Display Alphabetical List menu
item on the Options menu.

Running Simulations

The following sections explain how to use Simulink to simulate a dynamic system.

Simulation Basics (p. 10-2)

Specifying a Simulation Start and Stop
Time (p. 10-6)

Choosing a Solver (p. 10-7)

Importing and Exporting Simulation
Data (p. 10-16)

Configuration Sets (p. 10-26)

The Configuration Parameters Dialog
Box (p. 10-30)

Diagnosing Simulation Errors
(p. 10-72)

Improving Simulation Performance
and Accuracy (p. 10-76)

Running a Simulation
Programmatically (p. 10-78)

How to start, suspend, stop, interact with, and diagnose
errors in a simulation.

How to specify the start and stop time for a simulation.

How to select the optimal solver for simulating a model.

How to specify options for importing and exporting
simulation data to the MATLAB workspace.

How to specify interchangeable sets of simulation
configuration parameters for a model.

How to use the Configuration Parameters dialog box to
specify a simulation configuration.

How to use the Simulation Diagnostics Viewer to
diagnose simulation errors.

Tips on improving simulation performance and accuracy.

How to run a simulation from a program or the MATLAB
command line.

'|0 Running Simulations

Simulation Basics

10-2

Simulating a Simulink model requires only that you start the simulation (see
“Starting a Simulation” on page 10-3). However, before starting the
simulation, you may want to specify various simulation options, such as the
simulation’s start and stop time and the type of solver used to solve the model
at each simulation time step. Specifying simulation options is called
configuring a simulation. Simulink enables you to create multiple simulation
configurations, called configuration sets, for a model, modify existing
configuration sets, and switch configuration sets with a click of a mouse button
(see “Configuration Sets” on page 10-26 for information on creating and
selecting configuration sets).

Once you have defined or selected a simulation configuration set that meets
your needs, you can start the simulation. Simulink then runs the simulation
from the specified start time to the specified stop time. While the simulation is
running, you can interact with the simulation in various ways, stop or pause
the simulation (see “Pausing or Stopping a Simulation” on page 10-4), and
launch simulations of other models. If an error occurs during a simulation,
Simulink halts the simulation and pops up a diagnostic viewer that helps you
to determine the cause of the error.

Note The following sections explain how to run a simulation interactively.
See “Running a Simulation Programmatically” on page 10-78 for information
on running a simulation from a program or the MATLAB command line.

Simulation Basics

Controlling Execution of a Simulation

The Simulink graphical interface includes menu commands and toolbar
buttons that enable you to start, stop, and pause a simulation.

Starting a Simulation

To start execution of a model, select Start from the model editor’s Simulation
menu or click the Start button on the model’s toolbar.

File Edit Yiew Simulation Format Tools Help

D|@n§|%ﬁ|9Q|}KI20 INormaI '”@ﬁ

van der Pol Equation

~_ Start button

Qutl

Scope

The van der Pol Equation R K
(Double-click on the *2* for more info) Double-click

heme for

Simulink Help
To start and stop the simulation, use the *Start/Stop”
sakection in the "Simulation” pulldown meanu
Ready 100 [[|odets v

You can also use the keyboard shortcut, Ctrl+T, to start the simulation.

Note A common mistake that new Simulink users make is to start a
simulation while the Simulink block library is the active window. Make sure
your model window is the active window before starting a simulation.

Simulink starts executing the model at the start time specified on the
Configuration Parameters dialog box. Execution continues until the
simulation reaches the final time step specified on the Configuration
Parameters dialog box, an error occurs, or you pause or terminate the
simulation (see “The Configuration Parameters Dialog Box” on page 10-30).

10-3

'|0 Running Simulations

10-4

While the simulation is running, a progress bar at the bottom of the model
window shows how far the simulation has progressed. A Stop command
replaces the Start command on the Simulation menu. A Pause command
appears on the menu and replaces the Start button on the model toolbar.

File Edit Yiew Simulation Format Tools Help

D|@n§|%ﬁ|9q|lil5f INormaI '”@ﬁ

van der Pol Eqw%\
: . Stop button

——»(1) ™~ Pause button

Qutl

Scope

The van der Pol Equation

| " e P ? Doublkeclick
iDoubke-clickon the "?* for mor info) Ohuele rc: /Progress bur

Simulink Help

To start and stop the simulation, use the *Start/Stop”
sakection in the "Simulation” pulldown meanu

Running 100% []] =T670.075 |odedS
A

Your computer beeps to signal the completion of the simulation.

Pausing or Stopping a Simulation

Select the Pause command or button to pause the simulation. Simulink
completes execution of the current time step and suspends execution of the
simulation. When you select Pause, the menu item and button change to
Continue. (The button has the same appearance as the Start button). You can
resume a suspended simulation at the next time step by choosing Continue.

To terminate execution of the model, select the Stop command or button. The
keyboard shortcut for stopping a simulation is Ctrl+T, the same as for starting
a simulation. Simulink completes execution of the current time step before
terminating the model. Subsequently selecting the Start command or button
restarts the simulation at the first time step specified on the Configuration
Parameters dialog box.

Simulation Basics

If the model includes any blocks that write output to a file or to the workspace,
or if you select output options on the Configuration Parameters dialog box,
Simulink writes the data when the simulation is terminated or suspended.

Interacting with a Running Simulation
You can perform certain operations interactively while a simulation is running.
You can

¢ Modify some configuration parameters, including the stop time and the
maximum step size

® Click a line to see the signal carried on that line on a floating (unconnected)
Scope or Display block

® Modify the parameters of a block, as long as you do not cause a change in

= Number of states, inputs, or outputs

= Sample time

= Number of zero crossings

= Vector length of any block parameters

= Length of the internal block work vectors
You cannot make changes to the structure of the model, such as adding or
deleting lines or blocks, during a simulation. If you need to make these kinds

of changes, you need to stop the simulation, make the change, then start the
simulation again to see the results of the change.

10-5

'|0 Running Simulations

Specifying a Simulation Start and Stop Time

Simulink simulations start by default at 0.0 seconds and end at 10.0 seconds.
The Solver configuration pane allows you to specify other start and stop times
for the currently selected simulation configuration. See “The Solver Pane” on
page 10-31 for more information.

Note Simulation time and actual clock time are not the same. For example,
running a simulation for 10 seconds usually does not take 10 seconds. The
amount of time it takes to run a simulation depends on many factors,
including the model’s complexity, the solver’s step sizes, and the computer’s
speed.

10-6

Choosing a Solver

Choosing a Solver

A solver is a Simulink software component that determines the next time step
that a simulation needs to take to meet target accuracy requirements that you
specify. Simulink provides an extensive set of solvers, each adept at choosing
the next time step for specific types of applications. The following sections
explain how to choose the solver best suited to your application. For
information on tailoring the selected solver to your model, see “Improving
Simulation Accuracy” on page 10-77.

Choosing a Solver Type

Simulink divides solvers into two types: fixed-step and variable-step. Both
types of solvers compute the next simulation time as the sum of the current
simulation time and a quantity known as the step size. With a fixed-step solver,
the step size remains constant throughout the simulation. By contrast, with a
variable-step solver, the step size can vary from step to step, depending on the
model’s dynamics. In particular, a variable-step solver reduces the step size
when a model’s states are changing rapidly to maintain accuracy and increases
the step size when the system’s states are changing slowly in order to avoid
taking unnecessary steps. The Type control on the Simulink Solver
configuration pane allows you to select either of these two types of solvers (see
“The Solver Pane” on page 10-31).

The choice between the two types depends on how you plan to deploy your
model and the model’s dynamics. If you plan to generate code from your model
and run the code on a real-time computer system, you should choose a
fixed-step solver to simulate the model. This is because real-time computer
systems operate at fixed-size signal sample rates. A variable-step solver may
cause the simulation to miss error conditions that can occur on a real-time
computer system.

If you do not plan to deploy your model as generated code, the choice between
a variable-step and a fixed-step solver depends on the dynamics of your model.
If your model’s states change rapidly or contain discontinuities, a variable-step
solver can shorten the time required to simulate your model significantly. This
is because, for such a model, a variable-step solver can require fewer time steps
than a fixed-step solver to achieve a comparable level of accuracy.

The following model illustrates how a variable-step solver can shorten
simulation time for a multirate discrete model.

10-7

'|0 Running Simulations

10-8

1
Fd— : |-
Zz
: Out
Sine Wawe Unit Delay
Ts=045
1
L) EEVED
r4
) Outd
Sine Wave Unit Delay
Te=075

This model generates outputs at two different rates, every 0.5 second and every
0.75 second. To capture both outputs, the fixed-step solver must take a time
step every 0.25 second (the fundamental sample time for the model).

[0.0 0.25 0.5 0.75 1.0 1.25 ...]

By contrast, the variable-step solver need take a step only when the model
actually generates an output.

[0.0 0.5 0.75 1.0 1.5 2.0 2.25 ...]

This significantly reduces the number of time steps required to simulate the
model.

The variable-step discrete solver uses zero-crossing detection (see
“Zero-Crossing Detection” on page 2-19) to handle continuous signals.
Simulink uses this solver by default if you specify a continuous solver and your
model has no continuous states.

Choosing a Fixed-Step Solver

When the Type control of the Solver configuration pane is set to fixed-step,
the configuration pane’s Solver control allows you to choose one of the set of
fixed-step solvers that Simulink provides. The set of fixed-step solvers
comprises two types of solvers: discrete and continuous.

About the Fixed-Step Discrete Solver

The fixed-step discrete solver computes the time of the next time step by adding
a fixed step size to the time of the current time. The accuracy and length of time
of the resulting simulation depends on the size of the steps taken by the
simulation: the smaller the step size, the more accurate the results but the
longer the simulation takes. You can allow Simulink to choose the size of the
step size (the default) or you can choose the step size yourself. If you allow
Simulink to choose the step size, Simulink sets the step size to the fundamental

Choosing a Solver

sample time of the model if the model has discrete states or to the result of
dividing the difference between the simulation start and stop time by 50 if the
model has no discrete states. This choice assures that the simulation will hit
every simulation time required to update the model’s discrete states at the
model’s specified sample times

The fixed-step discrete solver has a fundamental limitation. It cannot be used
to simulate models that have continuous states. That’s because the fixed-step
discrete solver relies on a model’s blocks to compute the values of the states
that they define. Blocks that define discrete states compute the values of those
states at each time step taken by the solver. Blocks that define continuous
states, on the other hand, rely on the solver to compute the states. Continuous
solvers perform this task. You should thus select a continuous solver if your
model contains continuous states.

Note If you attempt to use the fixed-step discrete solver to update or
simulate a model that has continuous states, Simulink displays an error
message. Thus, updating or simulating a model is a quick way to determine
whether it has continuous states.

About Fixed-Step Continuous Solvers

Simulink provides a set of fixed-step continuous solvers that, like the fixed-step
discrete solver, compute the simulation’s next time by adding a fixed-size time
step to the current time. In addition, the continuous solvers employ numerical
integration to compute the values of a model’s continuous states at the current
step from the values at the previous step and the values of the state
derivatives. This allows the fixed-step continuous solvers to handle models that
contain both continuous and discrete states.

Note In theory, a fixed-step continuous solver can handle models that
contain no continuous states. However, that would impose an unnecessary
computational burden on the simulation. Consequently, Simulink always uses
the fixed-step discrete solver for a model that contains no states or only

discrete states, even if you specify a fixed-step continuous solver for the model.

10-9

'|0 Running Simulations

10-10

Simulink provides two distinct types of fixed-step continuous solvers: explicit
and implicit solvers. Explicit solvers (see “Explicit Fixed-Step Continuous
Solvers” on page 10-10) compute the value of a state at the next time step as an
explicit function of the current value of the state and the state derivative, e.g.,

X(n+1) = X(n) + h * DX(n)

where X is the state, DX is the state derivative, and h is the step size. An
implicit solver (see “Implicit Fixed-Step Continuous Solvers” on page 10-11)
computes the state at the next time step as an implicit function of the state and
the state derivative at the next time step, e.g.,

X(n+1) - X(n) - h*DX(n+1) =0

This type of solver requires more computation per step than an explicit solver
but is also more accurate for a given step size. This solver thus can be faster
than explicit fixed-step solvers for certain types of stiff systems.

Explicit Fixed-Step Continuous Solvers. Simulink provides a set of explicit fixed-step
continuous solvers. The solvers differ in the specific integration technique used
to compute the model’s state derivatives. The following table lists the available
solvers and the integration techniques they use.

Solver Integration Technique

odel Euler’s Method

ode2 Heun’s Method

ode3 Bogacki-Shampine Formula

ode4 Fourth-Order Runge-Kutta (RK4) Formula
odeb Dormand-Prince Formula

The integration techniques used by the fixed-step continuous solvers trade
accuracy for computational effort. The table lists the solvers in order of the
computational complexity of the integration methods they use from least
complex (ode1) to most complex (ode5).

As with the fixed-step discrete solver, the accuracy and length of time of a
simulation driven by a fixed-step continuous solver depends on the size of the
steps taken by the solver: the smaller the step size, the more accurate the

Choosing a Solver

results but the longer the simulation takes. For any given step size, the more
computationally complex the solver, the more accurate the simulation.

If you specify a fixed-step solver type for a model, Simulink sets the solver’s
model to ode3, i.e., it chooses a solver capable of handling both continuous and
discrete states with moderate computational effort. As with the discrete solver,
Simulink by default sets the step size to the fundamental sample time of the
model if the model has discrete states or to the result of dividing the difference
between the simulation start and stop time by 50 if the model has no discrete
states. This assures that the solver will take a step at every simulation time
required to update the model’s discrete states at the model’s specified sample
rates. However, it does not guarantee that the default solver will accurately
compute a model’s continuous states or that the model cannot be simulated in
less time with a less complex solver. Depending on the dynamics of your model,
you may need to choose another solver and/or sample time to achieve
acceptable accuracy or to shorten the simulation time.

Implicit Fixed-Step Continuous Solvers. Simulink provides one solver in this
category: ode14x. This solver uses a combination of Newton's method and
extrapolation from the current value to compute the value of a model state at
the next time step. Simulink allows you to specify the number of Newton’s
method iterations and the extrapolation order that the solver uses to compute
the next value of a model state (see “Fixed-Step Solver Options” on page 10-35).
The more iterations and the higher the extrapoloation order that you select, the
greater the accuracy but also the greater the computational burden per step
size.

Choosing a Fixed-Step Continuous Solver

Any of the fixed-step continuous solvers in Simulink can simulate a model to

any desired level of accuracy, given enough time and a small enough step size.
Unfortunately, in general, it is not possible, or at least not practical, to decide
a priori which solver and step size combination will yield acceptable results for
a model’s continuous states in the shortest time. Determining the best solver

for a particular model thus generally requires experimentation.

Here is the most efficient way to choose the best fixed-step solver for your
model experimentally. First, use one of the variable-step solvers to simulate
your model to the level of accuracy that you desire. This will give you an idea
of what the simulation results should be. Next, use ode1 to simulate your model
at the default step size for your model. Compare the results of simulating your

10-11

'|0 Running Simulations

10-12

model with ode1 with the results of simulating with the variable-step solver. If
the results are the same within the specified level of accuracy, you have found
the best fixed-step solver for your model, namely ode1. That’s because ode1 is
the simplest of the Simulink fixed-step solvers and hence yields the shorted
simulation time for the current step size.

If ode1 does not give accurate results, repeat the preceding steps with the other
fixed-step solvers until you find the one that gives accurate results with the
least computational effort. The most efficient way to do this is to use a binary
search technique. First, try ode3. If it gives accurate results, try ode2. If ode2
gives accurate results, it is the best solver for your model; otherwise, ode3 is
the best. If ode3 does not give accurate results, try ode5. If ode5 gives accurate
results, try ode4. If ode4 gives accurate results, select it as the solver for your
model; otherwise, select ode5.

If ode5 does not give accurate results, reduce the simulation step size and
repeat the preceding process. Continue in this way until you find a solver that
solves your model accurately with the least computational effort.

Choosing a Variable-Step Solver

When the Type control of the Solver configuration pane is set to
variable-step, the configuration pane’s Solver control allows you to choose
one of the set of variable-step solvers that Simulink provides. As with
fixed-step solvers in Simulink, the set of variable-step solvers comprises a
discrete solver and a subset of continuous solvers. Both types compute the time
of the next time step by adding a step size to the time of the current time that
varies depending on the rate of change of the model’s states. The continuous
solvers, in addition, use numerical integration to compute the values of the
model’s continuous states at the next time step. Both types of solvers rely on
blocks that define the model’s discrete states to compute the values of the
discrete states that each defines.

The choice between the two types of solvers depends on whether the blocks in
your model defines states and, if so, the kind of states that they define. If your
model defines no states or defines only discrete states, you should select the
discrete solver. In fact, if a model has no states or only discrete states, Simulink
will use the discrete solver to simulate the model even if the model specifies a
continuous solver.

Choosing a Solver

About Variable-Step Continuous Solvers

Simulink variable-step solvers vary the step size during the simulation,
reducing the step size to increase accuracy when a model’s states are changing
rapidly and increasing the step size to avoid taking unnecessary steps when
the model’s states are changing slowly. Computing the step size adds to the
computational overhead at each step but can reduce the total number of steps,
and hence simulation time, required to maintain a specified level of accuracy
for models with rapidly changing or piecewise continuous states.

Simulink provides the following variable-step continuous solvers:

® ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver; that is, in computing y (t,), it
needs only the solution at the immediately preceding time point, y (t,_1). In
general, ode45 is the best solver to apply as a first try for most problems. For
this reason, ode45 is the default solver used by Simulink for models with
continuous states.

® 0de23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It can be more efficient than ode45 at crude tolerances and in the
presence of mild stiffness. ode23 is a one-step solver.

® ode113is a variable-order Adams-Bashforth-Moulton PECE solver. It can be
more efficient than ode45 at stringent tolerances. ode113 is a multistep
solver; that is, it normally needs the solutions at several preceding time
points to compute the current solution.

® ode15s is a variable-order solver based on the numerical differentiation
formulas (NDF's). These are related to but are more efficient than the
backward differentiation formulas, BDF's (also known as Gear’s method).
Like ode113, ode15s is a multistep method solver. If you suspect that a
problem is stiff, or if ode45 failed or was very inefficient, try ode15s.

® 0ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it can be more efficient than ode15s at crude tolerances. It
can solve some kinds of stiff problems for which ode15s is not effective.

® ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and you
need a solution without numerical damping.

® ode23tbis an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same

10-13

'|0 Running Simulations

10-14

iteration matrix is used in evaluating both stages. Like ode23s, this solver
can be more efficient than ode15s at crude tolerances.

Note For a stiff problem, solutions can change on a time scale that is very
short compared to the interval of integration, but the solution of interest
changes on a much longer time scale. Methods not designed for stiff problems
are ineffective on intervals where the solution changes slowly because they
use time steps small enough to resolve the fastest possible change. Jacobian
matrices are generated numerically for ode15s and ode23s. For more
information, see Shampine, L. F., Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, 1994.

Specifying Variable-Step Solver Error Tolerances

The solvers use standard local error control techniques to monitor the error at
each time step. During each time step, the solvers compute the state values at
the end of the step and also determine the local error, the estimated error of
these state values. They then compare the local error to the acceptable error,
which is a function of the relative tolerance (rtol) and absolute tolerance (atol).
If the error is greater than the acceptable error for any state, the solver reduces
the step size and tries again:

® Relative tolerance measures the error relative to the size of each state. The
relative tolerance represents a percentage of the state’s value. The default,
le-3, means that the computed state is accurate to within 0.1%.

® Absolute tolerance is a threshold error value. This tolerance represents the
acceptable error as the value of the measured state approaches zero.

The error for the ith state, e;, is required to satisfy
e; <max(rtol x |x;|, atol;)
The following figure shows a plot of a state and the regions in which the

acceptable error is determined by the relative tolerance and the absolute
tolerance.

Choosing a Solver

rtol* | x|

SN\ — Region in which rtol determines acceptable error

Region in which atol determines acceptable error

~ \\
atoly, / /
A

Time

State

If you specify auto (the default), Simulink sets the absolute tolerance for each
state initially to 1e-6. As the simulation progresses, Simulink resets the
absolute tolerance for each state to the maximum value that the state has
assumed thus far times the relative tolerance for that state. Thus, if a state
goes from 0 to 1 and reltol is le-3, then by the end of the simulation the
abstol is set to 1e-3 also. If a state goes from 0 to 1000, then the abstol is set

to 1.

If the computed setting is not suitable, you can determine an appropriate
setting yourself. You might have to run a simulation more than once to
determine an appropriate value for the absolute tolerance.

The Integrator, Transfer Fcn, State-Space, and Zero-Pole blocks allow you to
specify absolute tolerance values for solving the model states that they
compute or that determine their output. The absolute tolerance values that you
specify for these blocks override the global settings in the Configuration
Parameters dialog box. You might want to override the global setting in this
way, if the global setting does not provide sufficient error control for all of your
model’s states, for example, because they vary widely in magnitude.

10-15

'|0 Running Simulations

Importing and Exporting Simulation Data

10-16

Simulink allows you to import input signal and initial state data from the
MATLAB workspace and export output signal and state data to the MATLAB
workspace during simulation. This capability allows you to use standard or
custom MATLAB functions to generate a simulated system’s input signals and
to graph, analyze, or otherwise postprocess the system’s outputs. See the
following sections for more information:

¢ “Importing Input Data from the MATLAB Workspace” on page 10-16
¢ “Exporting Output Data to the MATLAB Workspace” on page 10-20
¢ “Importing and Exporting States” on page 10-22

Importing Input Data from the MATLAB Workspace

Simulink can apply input from a model’s base workspace to the model’s
top-level inports during a simulation run. To specify this option, select the
Input box in the Load from workspace area of the Data Import/Export pane
(see “Data Import/Export Pane” on page 10-39). Then, enter an external input
specification (see below) in the adjacent edit box and click Apply.

The input data can take any of the following forms.

Importing Data Arrays

To use this format, select Input in the Load from workspace pane and select
the Array option from the Format list on the Data Import/Export pane.
Selecting this option causes Simulink to evaluate the expression next to the
Input check box and use the result as the input to the model.

The expression must evaluate to a real (noncomplex) matrix of data type
double. The first column of the matrix must be a vector of times in ascending
order. The remaining columns specify input values. In particular, each column
represents the input for a different Inport block signal (in sequential order) and
each row is the input value for the corresponding time point. Simulink linearly
interpolates or extrapolates input values as necessary if the Interpolate data
option is selected for the corresponding Inport.

The total number of columns of the input matrix must equal n + 1, where nis
the total number of signals entering the model’s inports.

Importing and Exporting Simulation Data

The default input expression for a model is [t,u] and the default input format
is Array. So if you define t and u in the base workspace, you need only select
the Input option to input data from the model’s base workspace. For example,
suppose that a model has two inports, one of which accepts two signals and the
other of which accepts one signal. Also, suppose that the base workspace
defines u and t as follows:

t = (0:0.1:1)';
u = [sin(t), cos(t), 4*cos(t)];

Note The array input format allows you to load only real (noncomplex) scalar
or vector data of type double. Use the structure format to input complex data,
matrix (2-D) data, and/or data types other than double.

Using a MATLAB Time Expression to Import Data

You can use a MATLAB time expression to import data from the MATLAB
workspace. To use a time expression, enter the expression as a string (i.e.,
enclosed in single quotes) in the Input field of the Data Import/Export pane.
The time expression can be any MATLAB expression that evaluates to a row
vector equal in length to the number of signals entering the model’s inports.
For example, suppose that a model has one vector Inport that accepts two
signals. Furthermore, suppose that timefcn is a user-defined function that
returns a row vector two elements long. The following are valid input time
expressions for such a model:

"[3*sin(t), cos(2*t)]’'
"4*timefcn(w*t)+7"'

Simulink evaluates the expression at each step of the simulation, applying the
resulting values to the model’s inports. Note that Simulink defines the variable
t when it runs the simulation. Also, you can omit the time variable in
expressions for functions of one variable. For example, Simulink interprets the
expression sin as sin(t).

10-17

'|0 Running Simulations

10-18

Importing Data Structures

Simulink can read data from the workspace in the form of a structure whose
name is specified in the Input text field. You can import structures that include
only signal data or both signal and time data.

Importing signal-and-time data structures. To import structures that include both
signal and time data, select the Structure with time option on from the
Format list on the Data Import/Export pane. The input structure must have
two top-level fields: time and signals. The time field contains a column vector
of the simulation times. The signals field contains an array of substructures,
each of which corresponds to a model input port.

Each signals substructure must contain two fields named values and
dimensions, respectively. The values field must contain an array of inputs for
the corresponding input port where each input corresponds to a time point
specified by the time field. The dimensions field specifies the dimensions of the
input. If each input is a scalar or vector (1-D array) value, the dimensions field
must be a scalar value that specifies the length of the vector (1 for a scalar). If
each input is a matrix (2-D array), the dimensions field must be a two-element
vector whose first element specifies the number of rows in the matrix and
whose second element specifies the number of columns.

Note You must set the Port dimensions parameter of the Inport to be the
same value as the dimensions field of the corresponding input structure. If
the values differ, Simulink stops and displays an error message when you try
to simulate the model.

If the inputs for a port are scalar or vector values, the values field must be an
M-by-N array where M is the number of time points specified by the time field
and N is the length of each vector value. For example, the following code creates
an input structure for loading 11 time samples of a two-element signal vector
of type int8 into a model with a single input port:

a.time = (0:0.1:1)"';

cl = int8([0:1:10]");

c2 = int8([0:10:100]");

a.signals(1).values = [c1 c2];
(

1
a.signals(1).dimensions = 2;

Importing and Exporting Simulation Data

To load this data into the model’s inport, you would select the Input option on
the Data Import/Export pane and enter a in the input expression field.

If the inputs for a port are matrices (2-D arrays), the values field must be an
M-by-N-by-T array where M and N are the dimensions of each matrix input and
T is the number of time points. For example, suppose that you want to input 51
time samples of a 4-by-5 matrix signal into one of your model’s input ports.
Then, the corresponding dimensions field of the workspace structure must
equal [4 5] and the values array must have the dimensions 4-by-5-by-51.

As another example, consider the following model, which has two inputs.

(1
-
seope
In2

Suppose that you want to input a sine wave into the first port and a cosine wave
into the second port. To do this, define a vector, a, as follows, in the base
workspace:

a.time = (0:0.1:1)"';
a.signals(1).values = sin(a.time);
a.signals(1).dimensions = 1;
a.signals(2).values = cos(a.time);
a.signals(2).dimensions = 1;

Select the Input box for this model, enter a in the adjacent text field, and select
StructureWithTime as the I/O format.

Importing Signal-Only Structures. The Structure format is the same as the
Structure with time format except that the time field is empty. For example,
in the preceding example, you could set the time field as follows:

a.time = []
In this case, Simulink reads the input for the first time step from the first

element of an inport’s value array, the value for the second time step from the
second element of the value array, etc.

Per-Port Structures. This format consists of a separate structure-with-time or
structure-without-time for each port. Each port’s input data structure has only
one signals field. To specify this option, enter the names of the structures in

10-19

'|0 Running Simulations

10-20

the Input text field as a comma-separated list, in1, in2, ..., inN, where in1
is the data for your model’s first port, in2 for the second inport, and so on.

Exporting Output Data to the MATLAB Workspace

You can specify return variables by selecting the Time, States, and/or Output
check boxes in the Save to workspace area of this dialog box pane. Specifying
return variables causes Simulink to write values for the time, state, and output
trajectories (as many as are selected) into the workspace.

To assign values to different variables, specify those variable names in the
fields to the right of the check boxes. To write output to more than one variable,
specify the variable names in a comma-separated list. Simulink saves the
simulation times in the vector specified in the Save to workspace area.

Note Simulink saves the output to the workspace at the base sample rate of
the model. Use a To Workspace block if you want to save output at a different
sample rate.

The Save options area enables you to specify the format and restrict the
amount of output saved.

Format options for model states and outputs are listed below.

Array. If you select this option, Simulink saves a model’s states and outputs in
a state and output array, respectively.

The state matrix has the name specified in the Save to workspace area (for
example, xout). Each row of the state matrix corresponds to a time sample of
the model’s states. Each column corresponds to an element of a state. For
example, suppose that your model has two continuous states, each of which is
a two-element vector. Then the first two elements of each row of the state
matrix contains a time sample of the first state vector. The last two elements
of each row contain a time sample of the second state vector.

The model output matrix has the name specified in the Save to workspace
area (for example, yout). Each column corresponds to a model outport, each
row to the outputs at a specific time.

Importing and Exporting Simulation Data

Note You can use array format to save your model’s outputs and states only if
the outputs are either all scalars or all vectors (or all matrices for states), are
either all real or all complex, and are all of the same data type. Use the
Structure or StructureWithTime output formats (see the following) if your
model’s outputs and states do not meet these conditions.

Structure with time. If you select this format, Simulink saves the model’s states
and outputs in structures having the names specified in the Save to
workspace area (for example, xout and yout).

The structure used to save outputs has two top-level fields: time and signals.
The time field contains a vector of the simulation times. The signals field
contains an array of substructures, each of which corresponds to a model
outport. Each substructure has four fields: values, dimensions, label, and
blockName. The values field contains the outputs for the corresponding
outport. If the outputs are scalars or vectors, the values field is a matrix each
of whose rows represents an output at the time specified by the corresponding
element of the time vector. If the outputs are matrix (2-D) values, the values
field is a 3-D array of dimensions M-by-N-by-T where M-by -N is the dimensions
of the output signal and T is the number of output samples. If T = 1, MATLAB
drops the last dimension. Therefore, the values field is an M-by -N matrix. The
dimensions field specifies the dimensions of the output signal. The label field
specifies the label of the signal connected to the outport or the type of state
(continuous or discrete). The blockName field specifies the name of the
corresponding outport or block with states.

The structure used to save states has a similar organization. The states
structure has two top-level fields: time and signals. The time field contains a
vector of the simulation times. The signals field contains an array of
substructures, each of which corresponds to one of the model’s states. Each
signals structure has four fields: values, dimensions, label, and blockName.
The values field contains time samples of a state of the block specified by the
blockName field. The label field for built-in blocks indicates the type of state:
either CSTATE (continuous state) or DSTATE (discrete state). For S-Function
blocks, the label contains whatever name is assigned to the state by the
S-Function block.

10-21

'|0 Running Simulations

10-22

The time samples of a state are stored in the values field as a matrix of values.
Each row corresponds to a time sample. Each element of a row corresponds to
an element of the state. If the state is a matrix, the matrix is stored in the
values array in column-major order. For example, suppose that the model
includes a 2-by-2 matrix state and that Simulink logs 51 samples of the state
during a simulation run. The values field for this state would contain a 51-by-4
matrix where each row corresponds to a time sample of the state and where the
first two elements of each row correspond to the first column of the sample and
the last two elements correspond to the second column of the sample.

Simulink can read back simulation data saved to the workspace in the
Structure with time output format. See “Importing signal-and-time data
structures” on page 10-18 for more information.

Structure. This format is the same as the preceding except that Simulink does
not store simulation times in the time field of the saved structure.

Per-Port Structures. This format consists of a separate structure-with-time or
structure-without-time for each output port. Each output data structure has
only one signals field. To specify this option, enter the names of the structures
in the Output text field as a comma-separated list, out1, out2, ..., outN,
where out1 is the data for your model’s first port, out2 for the second inport,
and so on.

Importing and Exporting States

Initial conditions, which are applied to the system at the start of the
simulation, are generally set in the blocks. You can override initial conditions
set in the blocks by specifying them in the Initial state field of the Load from
workspace area of the Data Import/Export pane.

You can also save the final states for the current simulation run and apply
them to a subsequent simulation run. This feature can be useful when you
want to save a steady-state solution and restart the simulation at that known
state. The states are saved in the format that you select in the Save options
area of the Data Import/Export pane.

Importing and Exporting Simulation Data

Saving Final States
To save the final states (the values of the states at the termination of the

simulation), select the Final states check box and enter a variable in the
adjacent edit field.

Loading Initial States

To load states, select the Initial state check box and specify the name of a
variable that contains the initial state values. This variable can be a matrix or
a structure of the same form as is used to save final states. This allows
Simulink to set the initial states for the current session to the final states saved
in a previous session, using the Structure or Structure with time format.

Model Reference Limitations On Loading Initial States. Simulink imposes the following
limitations on loading the states of models that reference other models or that
are referenced by other models.

® You cannot initialize the states of a referenced model from the workspace.
Simulink ignores the Initial state setting for such models.

® You can use the array format to initialize the states of a top model only if the
models that the top model references do not themselves have states.

® You can use the structure format to initialize the states of a top model but
not those of the models that it references.

Limiting Output

Saving data to the workspace can slow down the simulation and consume
memory. To avoid this, you can limit the number of samples saved to the most
recent samples or you can skip samples by applying a decimation factor. To set
a limit on the number of data samples saved, select the check box labeled Limit
data points to last and specify the number of samples to save. To apply a
decimation factor, enter a value in the field to the right of the Decimation
label. For example, a value of 2 saves every other point generated.

Specifying Output Options
The Output options list on the Data Import/Export configuration pane

(“Data Import/Export Pane” on page 10-39) enables you to control how much
output the simulation generates. You can choose from three options:

¢ Refine output

10-23

'|0 Running Simulations

10-24

¢ Produce additional output
® Produce specified output only

Refining Output

The Refine output choice provides additional output points when the
simulation output is too coarse. This parameter provides an integer number of
output points between time steps; for example, a refine factor of 2 provides
output midway between the time steps, as well as at the steps. The default
refine factor is 1.

To get smoother output, it is much faster to change the refine factor instead of
reducing the step size. When the refine factor is changed, the solvers generate
additional points by evaluating a continuous extension formula at those points.
Changing the refine factor does not change the steps used by the solver.

The refine factor applies to variable-step solvers and is most useful when you
are using ode45. The ode45 solver is capable of taking large steps; when
graphing simulation output, you might find that output from this solver is not
sufficiently smooth. If this is the case, run the simulation again with a larger
refine factor. A value of 4 should provide much smoother results.

Note This option does not help the solver to locate zero crossings (see
“Zero-Crossing Detection” on page 2-19).

Producing Additional Output

The Produce additional output choice enables you to specify directly those
additional times at which the solver generates output. When you select this
option, Simulink displays an Output times field on the Data Import/Export
pane. Enter a MATLAB expression in this field that evaluates to an additional
time or a vector of additional times. The additional output is produced using a
continuous extension formula at the additional times. Unlike the refine factor,
this option changes the simulation step size so that time steps coincide with the
times that you have specified for additional output.

Producing Specified Output Only

The Produce specified output only choice provides simulation output only
at the specified output times. This option changes the simulation step size so

Importing and Exporting Simulation Data

that time steps coincide with the times that you have specified for producing
output. This choice is useful when you are comparing different simulations to
ensure that the simulations produce output at the same times.

Comparing Output Options
A sample simulation generates output at these times:

0, 2.5, 5, 8.5, 10

Choosing Refine output and specifying a refine factor of 2 generates output at
these times:

0, 1.25, 2.5, 3.75, 5, 6.75, 8.5, 9.25, 10

Choosing the Produce additional output option and specifying [0:10]
generates output at these times

o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

and perhaps at additional times, depending on the step size chosen by the
variable-step solver.

Choosing the Produce specified output only option and specifying [0:10]
generates output at these times:

o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

In general, you should specify output points as integers times a fundamental
step size. For example,

[1:100]*0.01

is more accurate than

[1:0.01:100]

10-25

'|0 Running Simulations

Configuration Sets

10-26

A configuration set is a named set of values for a model’s parameters, such as
solver type and simulation start or stop time. Every new model is created with
a default configuration set, called Configuration, that initially specifies default
values for the model’s parameters. You can subsequently create and modify
additional configuration sets and associate them with the model. The sets
associated with a model can each specify different values for any given model
parameter.

The Active Set

Only one of the configuration sets associated with a model is active at any given
time. The active set determines the current values of the model’s model
parameters. Changing the value of a parameter in the Model Explorer changes
its value in the active set. Simulink allows you to change the active set at any
time (except when executing the model). In this way, you can quickly
reconfigure a model for different purposes, e.g., testing and production, or
apply standard configuration settings to new models.

To determine the configuration sets associated with a model, open the Model
Explorer (see “The Model Explorer” on page 9-2). The configuration sets
associated with the model appear as gear-shaped nodes in the Model Explorer’s
Model Hierarchy pane.

Activating a Configuration Set

To activate a configuration set, right-click the configuration set’s node to
display the node’s context menu, then select Activate from the context menu.

Copying and Moving Configuration Sets

You can copy or move a configuration set by dragging its node and dropping it
on any model node in the Model Hierarchy pane. To move a configuration set
from one model to another, hold the Ctrl key and the left mouse button down
and drag the configuration set’s node to the node of the destination model; to

copy a configuration, hold the Ctrl key and the right mouse button down and
drag the configuration set’s node to the node of the same or a different model.

Configuration Sets

Creating Configuration Sets

To create a new configuration set, copy an existing configuration set.

Setting Values in Configuration Sets

To set the value of a parameter in a configuration set, select the configuration
set in the Model Explorer and then edit the value of the parameter on the
corresponding dialog in the Model Explorer’s dialog view.

Configuration Set API

Simulink provides an application program interface (API) that permits you to
create and manipulate configuration sets from the command line or in a
MAT-file or M-file. For example, to create a configuration set from scratch at
the command line, enter

cfg_set = Simulink.ConfigSet('name')

where name is the name of the new configuration set. Use get_param and
set_param to get and set the value of a parameter in a configuration set. For
example, to specify the Simulink fixed-step discrete solver in the configuration
set, execute

set_param(cfg_set, 'Solver', 'FixedStepDiscrete')

To save the configuration set in a MAT-file, execute

save mat_file cfg _set

where mat_file is the name of the MAT-file. To load the configuration set,
execute

load mat_file

To prevent or allow a user to change the value of a parameter in a configuration
set, execute

setPropEnabled(cfg_set, 'param’, [0 | 1])

where param is the name of the parameter. To attach a configuration set to a
model, execute

attachConfigSet(model, cfg_set)

10-27

'|0 Running Simulations

10-28

where model is the model name (in quotes) or object. To get a model’s active
configuration set, execute

cfg_set = getActiveConfigSet(model)

To get a configuration set’s full name (e.g., engine/Configuration), execute

getFullName(cfg_set)

To set a model’s active set, execute

setActiveConfigSet(model, cfg_set)

where cfg_set is the configuration set’s name in quotes.

The Model Configuration Dialog Box

The Model Configuration dialog box appears when you select a model
configuration in the Model Explorer.

Conlfis ion P 2 wdp/C:

Model Configuration

The Configuiation is a set of 'Configuration Companents' that individually define specific
settings for & paicular model's execution [simulation) and/or deployment (code
generation]. & given model can have more than one Configuration associated with it
Different Configurations can be customized for the different phases of model
development. The ‘Active' Configuration is used for current operation (simulation or code
generation) on the madel. Only one Configuration is active at a time.
Configuration Name: 'Configuration'

Associated Model: vdp

Is Active: yes

Mame: [Configuration

Simulation made: [ol |

Deserption:

Hevert | Help | Apply. |

A

The dialog box has the following fields.

Name

Name of the configuration. You can change the name of the configuration by
editing this field.

Configuration Sets

Simulation mode

The simulation mode used to simulate the model in this configuration. The
options are normal (“Simulation Basics” on page 10-2), accelerator (see “The
Simulink Accelerator” on page 14-2), or external mode (see the Real-Time
Workshop documentation).

Description

A description of this configuration. You can use this field to enter information
pertinent to using this configuration.

10-29

'|0 Running Simulations

The Configuration Parameters Dialog Box

The Configuration Parameters dialog box allows you to modify settings for a
model’s active configuration set (see “Configuration Sets” on page 10-26).

Note You can also use the Model Explorer to modify settings for the active
configuration set as well as for any other configuration set. See “The Model
Explorer” on page 9-2 for more information.

To display the dialog box, select Configuration Parameters from the model
editor’s Simulation or context menu. The dialog box appears.

Select: —Simulation time
3 Start time: (0.0 Stop time: |2D
- [ata Import/E xport
DPtII‘nIZat.IDn —Salver optioh
- Diagnostics
Sample Time Type: I ‘ariable-step vl Solver: I oded5 [Dormand-Prince] LI
~Data Intx.agnty Man step size: Iauto Relative tolerance: |1 e3
- Conversion
Connectivity Min step size: Iauto Absolute tolerance: |1 eb
ompatibility Initial step size: Iauto—
- Model Referencing . "
- Zern crozzing control: I Use local settings 'l
- Hardware |mplementation
- Model Referencing

The dialog box groups the controls used to set the configuration parameters
into various categories. To display the controls for a specific category, click the
category in the Select tree on the left side of the dialog box. See the following
sections for information on how to use the various categories of controls to set
configuration parameters for the active configuration set.

¢ “The Solver Pane” on page 10-31

¢ “Data Import/Export Pane” on page 10-39

¢ “The Optimization Pane” on page 10-43

® “The Diagnostics Pane” on page 10-48

¢ “Hardware Implementation Pane” on page 10-63

¢ “Model Referencing Pane” on page 10-67

In most cases, Simulink does not immediately apply a change that you have
made with a control. To apply a change, you must click either the OK or the

10-30

The Configuration Parameters Dialog Box

Apply button at the bottom of the dialog box. The OK button applies all the
changes you made and dismisses the dialog box. The Apply button applies the
changes but leaves the dialog box open so that you can continue to make
changes.

Note Each of the controls on the Configuration Parameters dialog box
correspond to a configuration parameter that you can set via the sim and
simset commands. The “Model Parameters” subsection of the “Model and
Block Parameters” section of the Simulink Reference documenation lists these
parameters. This section also specifies for each configuration parameter the
Configuration Parameters dialog box prompt of the control that sets it. This
allows you to determine the model parameter corresponding to a control on
the Configuration Parameters dialog box.

The Solver Pane

The Solver configuration parameters pane allows you to specify a simulation
start and stop time and select and configure a solver for a particular simulation
configuration.

— Simulation time

Start time: [0.0 Stop time: |20
—Saolver option:
Tupe: I ‘ariable-step VI Solver: I oded5 [Dormand-Prince] LI
Max step size: Iauto Relative tolerance: |1 =3¢}
Min step size: Iauto Absolute tolerance: |1 eh

Initial step size: Iauto
Zern crozzing control: I Use local settings 'l

The Solver pane contains the following control groups.

Simulation time

This control group enables you to specify the simulation start and stop time. It
contains the following controls.

Start time. Specifies the simulation start time. The default start time is 0.0
seconds.

10-31

'|0 Running Simulations

10-32

Stop time. Specifies the simulation stop time. The default stop time is 10.0
seconds. Specify inf to cause the simulation to run until you pause or stop it.

Simulation time and actual clock time are not the same. For example, running
a simulation for 10 seconds usually does not take 10 seconds. The amount of
time it takes to run a simulation depends on many factors, including the
model’s complexity, the solver’s step sizes, and the computer’s speed.

Solver Options

The Solver options controls group allows you to specify the type of solver to be
used and simulation options specific to that solver.

Solver optian:
Tupe: I ‘ariable-step VI Solver: I oded5 [Dormand-Prince] LI
Max step size: Iauto Relative tolerance: |1 =3¢}
Min step size: Iauto Absolute tolerance: |1 eh

Initial step size: Iauto
Zern crozzing control: I Use local settings 'l

The contents of the group depends on the solver type.

General Solver Options
The follow options always appear.

Type. Specifies the type of solver to be used to solve the currently selected
model, either Fixed-step or Variable-step. See “Choosing a Solver Type” on
page 10-7 and “Improving Simulation Performance and Accuracy” on

page 10-76 for information on how to choose the solver type that best suits your
application.

Solver. Specifies the solver used to simulate this configuration of the current
model. The associated pull-down list displays available solvers of the type
specified by the Type control. To specify another solver of the specified type,
select the solver from the pull-down list. See “Choosing a Fixed-Step Solver” on
page 10-8 and “Choosing a Variable-Step Solver” on page 10-12 for information
on how to choose the solvers listed in the Solver list.

The other controls that appear in this group depend on the type of solver you
have selected.

The Configuration Parameters Dialog Box

Variable-Step Discrete Solver Options

The following options appear when you select the Simulink variable-step
discrete solver.

Solver option:

Type: IVariabIe-step LI Salver: I dizcrete [no continuous states) LI
Max step size: Iauto

Zefo crossing contral: I Use local settings LI

Max step size. Appears only if the solver Type is Variable-step. Specifies the
largest time step the selected variable-step solver can take. The default auto
causes Simulink to choose the model’s shortest sample time as the maximum
step size.

Zero crossing control. Enables zero-crossing detection during variable-step
simulation of the model. For most models, this speeds up simulation by
enabling the solver to take larger time steps. If a model has extreme dynamic
changes, disabling this option can speed up the simulation but can also
decrease the accuracy of simulation results. See “Zero-Crossing Detection” on
page 2-19 for more information.

You can override this optimization on a block-by-block basis for the following
types of blocks:

Abs Integrator Step
Backlash MinMax Switch
Dead Zone Relay Switch Case
Enable Relational Operator Trigger

Hit Crossing Saturation

If Sign

To override zero-crossing detection for an instance of one of these blocks, open
the block’s parameter dialog box and uncheck the Enable zero crossing
detection option. You can enable or disable zero-crossing selectively for these
blocks only if you have selected the Use local settings setting of the Zero

10-33

'|0 Running Simulations

10-34

crossing control control on the Solver pane of the Configuration
Parameters dialog box.

Variable-Step Continuous Solver Options

The following options appear when you select any of the Simulink variable-step
continuous solvers.

Solver optian:
Tupe: I ‘ariable-step VI Solver: I oded5 [Dormand-Prince] LI
Max step size: Iauto Relative tolerance: |1 =3¢}
Min step size: Iauto Absolute tolerance: |1 eh

Initial step size: Iauto
Zern crozzing control: I Use local settings 'l

Max step size. Specifies the largest time step the solver can take. The default is
determined from the start and stop times. If the stop time equals the start time
or is inf, Simulink chooses 0.2 sec. as the maximum step size. Otherwise, it
sets the maximum step size to

A — tstog _tstart

max 50

Generally, the default maximum step size is sufficient. If you are concerned
about the solver’s missing significant behavior, change the parameter to
prevent the solver from taking too large a step. If the time span of the
simulation is very long, the default step size might be too large for the solver to
find the solution. Also, if your model contains periodic or nearly periodic
behavior and you know the period, set the maximum step size to some fraction
(such as 1/4) of that period.

In general, for more output points, change the refine factor, not the maximum
step size. For more information, see “Output options” on page 10-42.

Initial step size. By default, the solver selects an initial step size by examining
the derivatives of the states at the start time. If the first step size is too large,
the solver might step over important behavior. The initial step size parameter
is a suggested first step size. The solver tries this step size but reduces it if error
criteria are not satisfied.

The Configuration Parameters Dialog Box

Min step size. This option appears only for variable-step continuous solvers.
Specifies the smallest time step the selected variable-step solver can take. If
the solver needs to take a smaller step to meet error tolerances, it issues a
warning indicating the current effective relative tolerance. This parameter can
be either a real number greater than zero or a two-element vector where the
first element is the minimum step size and the second element is the maximum
number of minimum step size warnings to be issued before issuing an error.
Setting the second element to zero results in an error the first time the solver
must take a step smaller than the specified minimum. This is equivalent to
changing the minimum step size violation diagnostic to error on the
Diagnostics pane. Setting the second element to -1 results in an unlimited
number of warnings. This is also the default if the input is a scalar. The default
values for this parameter are a minimum step size on the order of machine
precision and an unlimited number of warnings.

Relative tolerance. Relative tolerance for this solver (see “Specifying
Variable-Step Solver Error Tolerances” on page 10-14).

Absolute tolerance. Absolute tolerance for this solver (see “Specifying
Variable-Step Solver Error Tolerances” on page 10-14).

Maximum order. This option appears only if you select the ode15s solver, which
is based on NDF formulas of orders one through five. Although the higher order
formulas are more accurate, they are less stable. If your model is stiff and
requires more stability, reduce the maximum order to 2 (the highest order for
which the NDF formula is A-stable). As an alternative, you can try using the
ode23s solver, which is a lower order (and A-stable) solver.

Fixed-Step Solver Options

The following options appear when you choose one of the Simulink fixed-step
solvers.

—Saolver option:
Tupe: | Fived-step LI Solver: I ode3 [Bogacki-Shanpine] LI
Periodic zample time constraint: I Unconstrained LI
Fixed-step size [fundamental zample time]: Iauto
Tasking mode for periodic zample times: I Auto LI
™ Higher pririty value indicates higher task priority
™ Automatically handle data transfers between tasks

10-35

'|0 Running Simulations

10-36

Periodic sample time constraint. Allows you to specify constraints on the sample
times defined by this model. During simulation, Simulink checks to ensure that
the model satisifies the constraints. If the model does not satisfy the specified
constraint, Simulink displays an error message. The contents of the Solver
options group changes depending on the options selected. The options are

® Unconstrained
No constraints. Selecting this option causes Simulink to display a field for
entering the solver step size.

See “Fixed step size (fundamental sample time)” on page 10-36 for a
description of this field.

® Ensure sample time independent
Check to ensure that this model can inherit its sample times from a model
that references it without altering its behavior. Models that specify a step
size (i.e., a base sample time) cannot satisfy this constraint. For this reason,
selecting this option causes Simulink to hide the group’s step size field (see
“Fixed step size (fundamental sample time)” on page 10-36.

® Specified
Check to ensure that this model operates at a specified set of prioritized
periodic sample times.
Selecting this option causes Simulink to display additional controls for
specifying prioritized sample times and sample time priority options.

—Solver option:
Type: | Fized-step LI Solver: I dizcrete [no continuous states) LI
Perindic sample time constraint: I Specified LI

Sample time properties: I

Tasking mode for periodic sample times: I Auto LI
[+ Higher priority value indicates higher task priority

™ Automatically handle data transfers between tasks

See below for a description of these additional controls.

Fixed step size (fundamental sample time). Specifies the step size used by the
selected fixed-step solver. Entering auto (the default) in this field causes
Simulink to choose the step size. If the model specifies one or more periodic
sample times, Simulink chooses a step size equal to the least common
denominator of the specified sample times. This step size, known as the

The Configuration Parameters Dialog Box

fundamental sample time of the model, ensures that the solver will take a step
at every sample time defined by the model. If the model does not define any
periodic sample times, Simulink chooses a step size that divides the total
simulation time into 50 equal steps.

Sample time properties. Specifies and assigns priorities to the sample times that
this model implements. Enter an Nx3 matrix in this field whose rows specify
the sample times specified by this model in order from fastest rate to slowest
rate.

Note If the model’s fundamental rate differs from the fastest rate specified
by the model (see “Determining Step Size for Discrete Systems” on page 2-36),
you should specify the fundamental rate as the first entry in the matrix
followed by the specified rates in order from fastest to slowest.

The row for each sample time should have the form

[period, offset, priority]

where period is the sample time’s period of a sample time, offset is the
sample time’s offset, and priority is the execution priority of the real-time
task associated with the sample rate, with faster rates receiving higher
priorities. For example, the following entry

[fo.t1, o, 101, [0.2, 0, 11]; [0.3, O, 12]]

declares that this model should specify two sample rates, whose fundamental
sample time is 0.1 second, and assigns priorities of 10, 11, and 12 to the sample
times. This example assumes that for this model, higher priority values
indicate lower priorities, i.e., the Higher priority value indicates higher task
priority option is not selected (see “Higher priority value indicates higher task
priority” on page 10-39).

Note If your model operates at only one rate, you can enter the rate as a
three-element vector in this field, e.g., [0.1, 0, 10].

10-37

'|0 Running Simulations

10-38

When updating a model, Simulink checks the sample times defined by the
model against this field. If the model defines more or fewer sample times than
this field specifies, Simulink displays an error message.

Note If you select Unconstrained as the Periodic sample time constraint,
Simulink assigns a priority of 40 to the model’s base sample rate. If the
Higher priority value indicates higher task priority option is selected (see
“Higher priority value indicates higher task priority” on page 10-39), Simulink
assigns priorities 39, 38, etc., to subrates of the base rate; otherwise, it assigns
priorities 41, 42, 43, etc., to the subrates. Continuous rate is assigned a higher
priority than is the discrete base rate no matter whether you select Specified
or Unconstrained as the Periodic sample time constraint.

Tasking mode for periodic sample times. Specifies one of the following options:

® MultiTasking

This mode issues an error if it detects an illegal sample rate transition
between blocks, that is, a direct connection between blocks operating at
different sample rates. In real-time multitasking systems, illegal sample
rate transitions between tasks can result in a task’s output not being
available when needed by another task. By checking for such transitions,
multitasking mode helps you to create valid models of real-world
multitasking systems, where sections of your model represent concurrent
tasks.

Use the Rate Transition block to eliminate illegal rate transitions from your
model. For more information, see “Models with Multiple Sample Rates” in
the Real-Time Workshop documentation for more information.

® SingleTasking
This mode does not check for sample rate transitions among blocks. This
mode is useful when you are modeling a single-tasking system. In such
systems, task synchronization is not an issue.

® Auto

This option causes Simulink to use single-tasking mode if all blocks operate
at the same rate and multitasking mode if the model contains blocks
operating at different rates.

The Configuration Parameters Dialog Box

Higher priority value indicates higher task priority. If checked, this option indicates
that the real-time system targeted by this model assigns a higher priority to
tasks with higher priority values. This in turn causes Simulink Rate
Transition blocks to treat asynchronous transitions between rates with lower
priority values to rates with higher priority values as low-to-high rate
transitions. If unchecked (the default), this option indicates that the real-time
system targeted by this model assigns a higher priority to tasks with lower
priority values. This in turn causes Simulink Rate Transition blocks to treat
asynchronous transitions between rates with lower priority values to rates
with higher priority values as high-to-low rate transitions. See the Real-Time
Workshop documentation for more information on this option.

Automatically handle data transfers between tasks. If checked, this option causes
Simulink to insert hidden Rate Transition blocks where rate transitions occur
between blocks.

The next two options appear only if you select the ode14x solver (see “Implicit
Fixed-Step Continuous Solvers” on page 10-11).

Extrapolation Order. Extrapolation order used by the ode14x solver to compute a
model’s states at the next time step from the states at the current time step.
The higher the order, the more accurate but the more computationally
intensive is the solution per step size.

Number Newton's iterations. Number of Newton’s method iterations used by the
odel4x solver to compute a model’s states at the next time step from the states
at the current time step. The more iterations, the more accurate but the more
computationally intensive is the solution per step size.

Data Import/Export Pane

The Data Import/Export pane allows you to import and export data to the
MATLAB workspace. To display the pane, select Data Import/Export from the
Select tree of the Configuration Parameters dialog box or select a

10-39

'|0 Running Simulations

configuration set (see “Configuration Sets” on page 10-26) in the Model
Explorer and display the configuration’s Data Import/Export subset.

—Load from work space
™ Input: I[t, u]
™ Iriial state: lenitial

—Save to workspace

¥ Time: Itout
[T States: Ixout
V' Output: Iyout

™ Final states: IxFinaI

—Save option:
¥ Limit data points to last: I‘IDDD Decimation: |1
Format: I Array 'l Signal lagaing name: Ilogsout

Load from workspace

This group contains controls that enable you to specify options for importing
data from the MATLAB workspace.

Load from workspace

™ Input: I[t, u]

[Iritial state: lenitial

It includes the following controls.

Input. A MATLAB expression that specifies the data to be imported from the
MATLAB workspace. See “Importing Input Data from the MATLAB
Workspace” on page 10-16 for information on how to use this field.

Initial state. A MATLAB expression that specifies the initial values of a model’s

states. See “Importing and Exporting States” on page 10-22 for more
information.

10-40

The Configuration Parameters Dialog Box

Save to workspace

This group contains controls that enable you to specify options for exporting
data to the MATLAB workspace.

Save to workspace

¥ Time: Itout
[T States: Ixout
V' Output: Iyout

™ Final states: IxFinaI

It includes the following controls.

Time. Name of the MATLAB variable to be used to store simulation time data
to be exported during simulation.

States. Specifies the name of a MATLAB variable to be used to store state data
exported during a simulation. See “Importing and Exporting States” on
page 10-22 for more information.

Ouput. Name of the MATLAB variable to be used to store signal data exported
during this simulation. See “Exporting Output Data to the MATLAB
Workspace” on page 10-20 for more information.

Final states. Specifies the name of a MATLAB variable to be used to store the
values of this model’s states at the end of a simulation. See “Importing and
Exporting States” on page 10-22 for more information.

Save options

This group contains controls that allow you to specify options for saving (and
reloading) data from the MATLAB workspace.

Save option:
¥ Limit data points to last: I‘IDDD Decimation: |1
Format: I Array 'l Signal lagaing name: Ilogsout

It includes the following controls.

Limit data points to last. Limits the number of data points exported to the
MATLAB workspace to N, the number specified in the adjacent edit field. At the

10-41

'|0 Running Simulations

10-42

end of the simulation, the MATLAB workspace contains the last N points
generated by the simulation.

Decimation. If specified, Simulink outputs only every N points, where N is the
specified decimation factor.

Format. Specifies the format of state and output data saved to or loaded from
the MATLAB workspace. The options are

® Array
The format of the data is a matrix each row of which corresponds to a
simulation time step.

® Structure with time

The format of the data is a structure that has two fields: a time field and a
signals field. The time field contains a vector of simulation times. The signals
field contains a substructure for each model input port (for imported data) or
output port (for exported data). Each port substructure contains signal data
for the corresponding port.

® Structure

The format of the data is a structure that contains substructures for each
port. Each port substructure contains signal data for the corresponding port.

See “Importing and Exporting Simulation Data” on page 10-16 for more
information on these formats.

Signal logging name. Variable name used to store signals logged during a
simulation (see “Logging Signals” on page 6-27).

Output options. Options for generating additional output signal data.

Note These options appear only if the model specifies a variable-step solver
(see “The Solver Pane” on page 10-31).

The options are

® Refine output

Output data between as well as at simulation times steps. Selecting this
option causes the Refine factor edit field to appear below this control (see

The Configuration Parameters Dialog Box

“Refine factor” on page 10-43). Use this field to specify the number of points
to generate between simulation time steps. For more information, see
“Refining Output” on page 10-24.

® Produce additional output

Produce additional output at specified times. Selecting this option causes the
Output times field to appear. Use this field to specify the simulation times
at which Simulink should generate additional output.

® Produce specified output

Produce output only at specified times. Selecting this option causes the
Output times field to appear. Use this field to specify the simulation times
at which Simulink should generate additional output.

Refine factor. This field appears when you select Refine output as the value of
Output options. It specifies how many points to generate between time steps.
For example, a refine factor of 2 provides output midway between the time
steps, as well as at the steps. The default refine factor is 1. For more
information, see “Refining Output” on page 10-24.

Output times. This field appears when you select Produce additional output
or Produce specified output as the value of Output options. Use this field
to specify times at which Simulink should generate output in addition to or
instead of at the simulation steps taken by the solver used to simulate the
model.

The Optimization Pane

The Optimization pane allows you to select various options that improve
simulation performance and the performance of code generated from this
model.

Simulation and code generation
¥ Block reduction optimization V¥ Conditional input branch execution

IV Implement logic signals as boolean data [vs. double]. V' Signal storage reuse

™ Inline parameters Configure ... |

Application lifespan [days) Iinf

10-43

'|0 Running Simulations

10-44

The pane contains the following controls.

Block reduction optimization. Replaces a group of blocks with a synthesized block,
thereby speeding up execution of the model.

Conditional input branch execution. This optimization applies to models containing
Switch and Multiport Switch blocks. When enabled, this optimization executes
only the blocks required to compute the control input and the data input
selected by the control input at each time step for each Switch or Multiport
Switch block in the model. Similarly, code generated from the model by
Real-Time Workshop executes only the code needed to compute the control
input and the selected data input. This optimization speeds simulation and
execution of code generated from the model.

At the beginning of the simulation or code generation, Simulink examines each
signal path feeding a switch block data input to determine the portion of the
path that can be optimized. The optimizable portion of the path is that part of
the signal path that stretches from the corresponding data input back to the
first block that is a nonvirtual subsystem, has continuous or discrete states, or
detects zero crossings.

Simulink encloses the optimizable portion of the signal path in an invisible
atomic subsystem. During simulation, if a switch data input is not selected,
Simulink executes only the nonoptimizable portion of the signal path feeding
the input. If the data input is selected, Simulink executes both the
nonoptimizable and the optimizable portion of the input signal path.

Inline parameters. By default you can modify (“tune”) many block parameters
during simulation (see “Tunable Parameters” on page 2-8). Selecting this
option makes all parameters nontunable by default. Making parameters
nontunable allows Simulink to move blocks whose outputs depend only on
block parameter values outside the simulation loop, thereby speeding up
simulation of the model and execution of code generated from the model. When
this option is selected, Simulink disables the parameter controls of the block
dialog boxes for the blocks in your model to prevent you from accidentally
modifying the block parameters.

Simulink allows you to override the Inline parameters option for parameters
whose values are defined by variables in the MATLAB workspace. To specify
that such a parameter remain tunable, specify the parameter as global in the
Model Parameter Configuration dialog box (see “Model Parameter

Configuration Dialog Box” on page 10-47). To display the dialog box, click the

The Configuration Parameters Dialog Box

adjacent Configure button. To tune a global parameter, change the value of
the corresponding workspace variable and choose Update Diagram (Ctrl+D)
from the Simulink Edit menu.

Note You cannot tune inlined parameters in code generated from a model.
However, when simulating a model, you can tune an inlined parameter if its
value derives from a workspace variable. For example, suppose that a model
has a Gain block whose Gain parameter is inlined and equals a, where a is a
variable defined in the model’s workspace. When simulating the model,
Simulink disables the Gain parameter field, thereby preventing you from
using the block’s dialog box to change the gain. However, you can still tune the
gain by changing the value of a at the MATLAB command line and updating
the diagram.

Implement logic signals as boolean data (vs. double). Causes blocks that accept
Boolean signals to require Boolean signals. If this option is off, blocks that
accept inputs of type boolean also accept inputs of type double. For example,
consider the following model.

A
|
AND
2 ™
Lagical Displsoy
1 Cpemtor
E

This model connects signals of type double to a Logical Operator block, which
accepts inputs of type boolean. Ifthe Boolean logic signals option is on, this
model generates an error when executed. If the Boolean logic signals option
is off, this model runs without error.

10-45

'|0 Running Simulations

10-46

Note This option allows the current version of Simulink to run models that
were created by earlier versions of Simulink that supported only signals of
type double.

Signal storage reuse. Causes Simulink to reuse memory buffers allocated to store
block input and output signals. If this option is off, Simulink allocates a
separate memory buffer for each block’s outputs. This can substantially
increase the amount of memory required to simulate large models, so you
should select this option only when you need to debug a model. In particular,
you should disable signal storage reuse if you need to

¢ Debug a C-MEX S-function

¢ Use a Floating Scope or a Display block with the Floating display option
selected to inspect signals in a model that you are debugging

Simulink opens an error dialog if Signal storage reuse is enabled and you
attempt to use a Floating Scope or floating Display block to display a signal
whose buffer has been reused.

Application lifespan (days). Specifies the lifespan in days of the system
represented by this model. This value and the simulation step size determine
the data type used by fixed-point blocks to store absolute time values.

The Configuration Parameters Dialog Box

Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box allows you to override the
Inline parameters option (see “Inline parameters” on page 10-44) for selected
parameters.

) Model Farameter Configuration: vdp M=l B3
—Description
Define the global (funable) parameters for your model. These parameters affect:
1. the simulation by providing the ability to tune parameters during execution, and
2. the generated code by enabling access to parametears by other modules.
—Source list —Glohal {tunahle) parameters
MATLAR warkspace =l | name | Storage class Storage type gualifier
Name
1|balance
2 gain
Refresh list Al to et e R | Rermove |
Ok | Cancel Help | Apply |

The dialog box has the following controls.

Source list. Displays a list of workspace variables. The options are
® MATLAB workspace

List all variables in the MATLAB workspace that have numeric values.
® Referenced workspace variables

List only those variables referenced by the model.

Refresh list. Updates the source list. Click this button if you have added a
variable to the workspace since the last time the list was displayed.

Add to table. Adds the variables selected in the source list to the adjacent table
of tunable parameters.

New. Defines a new parameter and adds it to the list of tunable parameters.

Use this button to create tunable parameters that are not yet defined in the
MATLAB workspace.

10-47

'|0 Running Simulations

10-48

Note This option does not create the corresponding variable in the MATLAB
workspace. You must create the variable yourself.

Storage class. Used for code generation. See the Real-Time Workshop
documentation for more information.

Storage type quadlifier. Used for code generation. See the Real-Time Workshop
documentation for more information.

The Diagnostics Pane

The Diagnostics configuration parameters pane enables you to specify what
diagnostic action Simulink should take, if any, when it detects an abnormal
condition during compilation or simulation of a model.

Diagnostics

Cateqgories: —Saolver
Salver . -
- Algebraic loop:

Sample tine gebraic loop: | warning LI

Data integrity Block priority violation: I warning LI

Conversion

Connectivity Min step size violation: I warning LI

Compatibility S o . -

Model referencing Unspecified inheritability of sample time: I warning 'l
Solver data inconsistency: I none 'l

The options are typically to do nothing or to display a warning or an error
message (see “Diagnosing Simulation Errors” on page 10-72). A warning
message does not terminate a simulation, but an error message does.

The pane displays groups of controls corresponding to various categories of
abnormal conditions that can occur during a solution. To display controls for a
specific category, left-click the category in the Categories list on the left side
of the Diagnostics pane. To display controls for additional categories, left-click
the categories while pressing the Ctrl key on your keyboard. See the following
sections for information on using the controls on the Diagnostics pane:

¢ “Solver Diagnostics” on page 10-49
¢ “Sample Time Diagnostics” on page 10-51
¢ “Data Integrity Diagnostics” on page 10-52

The Configuration Parameters Dialog Box

¢ “Conversion Diagnostics” on page 10-54

¢ “Connectivity Diagnostics” on page 10-55

® “Compatibility Diagnostics” on page 10-56

¢ “Model Reference Diagnostics” on page 10-60

Solver Diagnostics

This control group enables you to specify the diagnostic action that Simulink
should take when it detects a solver-related error.

—Solver

Algebraic loop: I warning
Minimize algebraic loop: I warning
Block. priority violation: I warning
Min step size violation: I warning

Unszpecified inheritability of sample time: I warning

Solver data inconsistency: I nane

L LeflefLed LefLe] 1e]

Automatic solver parameter selection: I warning

Algebraic loop. Simulink detected an algebraic loop while compiling the model.
See “Algebraic Loops” on page 2-24 for more information. If you set this option
to Error, Simulink displays an error message and highlights the portion of the
block diagram that comprises the loop (see “Highlighting Algebraic Loops” on
page 2-26).

Minimize algebraic loop. Specifies diagnostic action to take if you have requested
that Simulink attempt to remove algebraic loops involving a specified
subsystem (see “Eliminating Algebraic Loops” on page 2-27) and an input port
of that subsystem has direct feedthrough. If the port is involved in an algebraic
loop, Simulink can remove the loop only if at least one other input port in the
loop lacks direct feedthrough.

Block priority violation. Simulink detected a block priority specification error
while compiling the model.

Min step size violation. The next simulation step is smaller than the minimum
step size specified for the model. This can occur if the specified error tolerance
for the model requires a step size smaller than the specified minimum step size.
See “Min step size” on page 10-35 and “Maximum order” on page 10-35 for
more information.

10-49

'|0 Running Simulations

10-50

Unspecified inheritability of sample time. Specifies diagnostic action to be taken if
this model contains S-functions that do not specify whether they preclude this
model from inheriting their sample times from a parent model. Simulink
checks for this condition only if the solver used to simulate this model is a
fixed-step discrete solver and the periodic sample time constraint for the solver
is set to ensure sample time independence (see “Periodic sample time
constraint” on page 10-36).

Solver data inconsistency. Consistency checking is a debugging tool that validates
certain assumptions made by Simulink ODE solvers. Its main use is to make
sure that S-functions adhere to the same rules as Simulink built-in blocks.
Because consistency checking results in a significant decrease in performance
(up to 40%), it should generally be set to none. Use consistency checking to
validate your S-functions and to help you determine the cause of unexpected
simulation results.

To perform efficient integration, Simulink saves (caches) certain values from

one time step for use in the next time step. For example, the derivatives at the
end of a time step can generally be reused at the start of the next time step. The
solvers take advantage of this to avoid redundant derivative calculations.

Another purpose of consistency checking is to ensure that blocks produce
constant output when called with a given value of ¢ (time). This is important
for the stiff solvers (ode23s and ode15s) because, while calculating the
Jacobian matrix, the block’s output functions can be called many times at the
same value of ¢.

When consistency checking is enabled, Simulink recomputes the appropriate
values and compares them to the cached values. If the values are not the same,
a consistency error occurs. Simulink compares computed values for these
quantities:

¢ Qutputs
® Zero crossings

® Derivatives
e States

Automatic solver parameter selection. Specifies diagnostic action to take if Simulink
changes a solver parameter setting. For example, suppose that you simulate a
discrete model that specifies a continuous solver and warning as the setting for

The Configuration Parameters Dialog Box

this diagnosic. In this case, Simulink changes the solver type to discrete and
displays a warning message about this change at the MATLAB command line.

Sample Time Diagnostics

This control group enables you to specify the diagnostic action that Simulink
should take when it detects a compilation error related to model sample times.

Sample Time

Source block specifies -1 zample time: I warning
Dizcrete uged as continuos: I warning
Multitask rate tranzitior: I eror

Single tazk rate transition: I none

L L L fled e

Aspnchronous triggers with equal priority: I warning

Source block specifies -1 sample time. A source block (e.g., a Sine Wave block)
specifies a sample time of -1.

Discrete used as continuous. The Unit Delay block, which is a discrete block,
inherits a continuous sample time from the block connected to its input.

Multitask rate transition. An invalid rate transition occurred between two blocks
operating in multitasking mode (see “Tasking mode for periodic sample times”
on page 10-38).

Single task rate transition. A rate transition occurred between two blocks
operating in single-tasking mode (see “Tasking mode for periodic sample times”
on page 10-38).

Asynchronous triggers with equal priority. One asynchronous task of the target
represented by this model has the same priority as another of the target’s
asynchronous tasks. This option must be set to Error if the target allows tasks
having the same priority to preempt each other.

10-51

'|0 Running Simulations

10-52

Data Integrity Diagnostics

This control group enables you to specify the diagnostic action that Simulink
should take when it detects a condition that could compromise the integrity of
data defined by the model.

—Data Integrity
Signal rezolution control: I Try rezolve all signals & states [warn for implicit resolution) LI
Atternpted division by singular matrix: I none LI
32-bit integer to zsingle precision float conversion: I warning LI
Parameter downcast: I eror LI
FParameter overflow: I eror LI
Farameter precision loss: I warning LI
Underspecified data types: I none LI
Duplicate data store names: I none LI
Armay bounds exceeded: I none LI
[rata overflow: I warning LI
Model Yerification block enabling: I Use local settings LI

Signal resolution control. Specifies how Simulink resolves signals to
Simulink.Signal objects in the MATLAB workspace. The options are

® Try resolve all signals & states (warn for implicit resolution)

Try to resolve every signal or discrete state that has a name to a
Simulink.Signal object having the same name. Display a warning message
if a signal or state resolves implicitly to a signal object, i.e., a signal object
with the same name as the signal or state exists in the MATLAB workspace
but the model does not specify that the signal or state should resolve to a
signal object.

® Try resolve all signals & states
Try to resolve every signal or discrete state that has a name to a
Simulink.Signal object having the same name regardless of whether the
model specifies that the signal or state should resolve to a signal object.

® Use local settings
Try to resolve every signal or discrete state that the model specifies should
resolve to a Simulink.Signal object in the MATLAB workspace.

The Configuration Parameters Dialog Box

Note Use the Signal Properties dialog box (see “Signal Properties Dialog
Box” on page 6-30) to specify explicit resolution for signals. Use the State
Properties dialog boxes of blocks that have discrete states, e.g., the
Discrete-Time Integrator block, to specify explicit resolution for discrete
states.

Attempted division by singular matrix. The Product block detected a singular matrix
while inverting one of its inputs in matrix multiplication mode.

32-bit integer to single precision float conversion. A 32-bit integer value was
converted to a floating-point value. Such a conversion can result in a loss of
precision. See “Working with Data Types” on page 7-2 for more information.

Parameter downcast. Computation of the output of the block required converting
the parameter’s specified type to a type having a smaller range of values (e.g.,
from uint32 to uint8). This diagnostic applies only to named tunable
parameters.

Parameter overflow. The data type of the parameter could not accommodate the
parameter’s value.

Parameter precision loss. Computation of the output of the block required
converting the specified data type of the parameter to a less precise data type
(e.g., from double to uint8).

Underspecified data types. Simulink could not infer the data type of a signal
during data type propagation.

Duplicate data store names. The model contains multiple Data Store Memory
blocks that specify the same data store name.

Array bounds exceeded. This option causes Simulink to check whether a block
writes outside the memory allocated to it during simulation. Typically this can
happen only if your model includes a user-written S-function that has a bug. If
enabled, this check is performed for every block in the model every time the
block is executed. As a result, enabling this option slows down model execution
considerably. Thus, to avoid slowing down model execution needlessly, you
should enable the option only if you suspect that your model contains a

10-53

'|0 Running Simulations

10-54

user-written S-function that has a bug. See Writing S-Functions for more
information on using this option.

Data overflow. The value of a signal or parameter is too large to be represented
by the signal or parameter’s data type. See “Working with Data Types” on
page 7-2 for more information.

Model Verification block enabling. This parameter allows you to enable or disable
model verification blocks in the current model either globally or locally. Select
one of the following options:

® Use local settings

Enables or disables blocks based on the value of the Enable assertion
parameter of each block. If a block’s Enable assertion parameter is on, the
block is enabled; otherwise, the block is disabled.

® Enable all
Enables all model verification blocks in the model regardless of the settings
of their Enable assertion parameters.

® Disable all
Disables all model verification blocks in the model regardless of the settings
of their Enable assertion parameters.

Conversion Diagnostics

This control group enables you to specify the diagnostic action that Simulink
should take when it detects a data type conversion problem while compiling the
model.

Conversion

Unnecessary type conversions: I hone LI

Wector/matrix block input conversion: I hone LI

Unnecessary type conversions. A Data Type Conversion block is used where no
type conversion is necessary.

Vector/matrix block input conversion. A vector-to-matrix or matrix-to-vector
conversion occurred at a block input (see “Vector or Matrix Input Conversion
Rules” on page 6-14).

The Configuration Parameters Dialog Box

Connectivity Diagnostics

This control group enables you to specify the diagnostic action that Simulink
should take when it detects a problem with block connections while compiling
the model.

—Connectivity
Irvvalid function call connection: I efrar LI
Signal label mismatich: I none LI
Unconnected block input ports: I warning LI
Unconnected block output ports: I warning LI
Unconnected line: I warning LI
Unszpecified bus object I warning LI

Invalid function call connection. Simulink has detected an incorrect use of a
function-call subsystem in your model (see the “Function-call systems”
examples in the Simulink “Subsystem Semantics” library for examples of
invalid uses of function-call subsystems. Disabling this error message can lead
to invalid simulation results.

Signal label mismatch. The simulation encountered virtual signals that have a
common source signal but different labels (see “Virtual Signals” on page 6-4).

Unconnected block input ports. Model contains a block with an unconnected input.

Unconnected block output ports. Model contains a block with an unconnected
output.

Unconnected line. Model contains an unconnected line.
Unspecified bus object. Specifies diagnostic action to take while generating a
simulation target for a referencced model if any of the model’s root Outport

blocks is connected to a bus but does not specify a bus object (see
Simulink.Bus).

10-55

'|0 Running Simulations

Compatibility Diagnostics

This control group enables you to specify the diagnostic action that Simulink
should take when it detects an incompatibility between this version of
Simulink and the model when updating or simulating the model.

Compatibility

S-function upgrades needed: | none LI
V¥ Check undefined subspstem initial output
V¥ Check preactivation output of execution context

V¥ Check runtime output of execution contest

S-function upgrade needed. A block was encountered that has not been upgraded
to use features of the current release.

Check undefined subsystem initial output. Display a warning if the model contains a
conditionally executed subystem in which a block with a specified initial
condition (e.g., a Constant, Initial Condition, or Delay block) drives an Outport
block with an undefined initial condition, i.e., the Outport block’s Initial
output parameter is set to [].

Models with such subystems can produce initial results (i.e., before initial
activation of the conditionally executed subsystem) in the current release that
differ from initial results produced in Release 13 or earlier releases.

Consider for example the following model.

Stap l

Trigger
*
Oult 5 —m 1)
. Outl
R Constant
Trigoe red R }
Subsystam

This model does not define the initial condition of the triggered subsystem’s
output port.

10-56

The Configuration Parameters Dialog Box

The following figure compares the superimposed output of this model’s Step
block and the triggered subsystem in Release 13 and the current release.

Release 13 Current Release

Notice that the initial output of the triggered subsystem differs between the
two releases. This is because Release 13 and earlier releases use the initial
output of the block connected to the output port (i.e., the Constant block) as the
triggered subsystem’s initial output. By contrast, this release outputs 0 as the
initial output of the triggered subsystem because the model does not specify the
port’s initial output.

Check preactivation output of execution context. Display a warning if the model
contains a block that meets the following conditions:

¢ The block produces nonzero output for zero input (e.g., a Cosine block).

¢ The block is connected to an output of a conditionally executed subsystem.
¢ The block inherits its execution context from that subsystem.

e The Outport to which it is connected has an undefined initial condition, i.e.,
the Outport block’s Initial output parameter is set to [].

Models with blocks that meet these criteria can produce initial results (i.e.,
before the conditionally executed subsystem is first activated in the current
release that differ from initial results produced in Release 13 or earlier
releases.

10-57

'|0 Running Simulations

Consider for example the following model.

Fulss
Genermator Scope
]
Cutl —] cos
« Trigonametric Trigger

“Runction

P (D

Cutl

Sine Wawe

The following figure compares the superimposed output of the Pulse Generator
and cos block in Release 13 and the current release.

Release 13 Current Release

Note that the initial output of the cos block differs between the two releases.
This is because in Release 13, the cos block belongs to the execution context of
the root system and hence executes at every time step whereas in the current
release, the cos block belongs to the execution context of the triggered
subsystem and hence executes only when the triggered subsystem executes.

Check runtime output of execution context. Display a warning if the model contains a
block that meets the following conditions:

¢ The block has a tunable parameter.

10-58

The Configuration Parameters Dialog Box

¢ The block is connected to an output of a conditionally executed subsystem.
¢ The block inherits its execution context from that subsystem.

e The Outport to which it is connected has an undefined initial condition, i.e.,
the Outport block’s Initial output parameter is set to [].

Models with blocks that meet these criteria can produce results when the
parameter is tuned in the current release that differ from results produced in

Release 13 or earlier releases.

Consider for example the following model.

1
Ount
-
Trigigge e e, man Trigger
Subsystem
| U Cutl
20 tunevar Sine Wave
Clck S-Function |

In this model, the tunevar S-function changes the value of the Gain block’s k
parameter and updates the diagram at simulation time 7 (i.e., it simulates
interactively tuning the parameter).

10-59

'|0 Running Simulations

10-60

The following figure compares the superimposed output of the model’s Pulse
Generator block and its Gain block in Release 13 and the current release.

Release 13 Current Release

Note that the output of the Gain block changes at time 7 in Release 13 but does
not change in the current release. This is because in Release 13, the Gain block
belongs to the execution context of the root system and hence executes at every
time step whereas in the current release, the Gain block belongs to the
execution context of the triggered subsystem and hence executes only when the
triggered subsystem executes, i.e., at times 5, 10, 15, and 20.

Model Reference Diagnostics

This control group enables you to specify the diagnostic action that Simulink
should take when it detects in incompatibility between this version of Simulink
and the model while when updating or simulating the model.

Solver I Sample Time I Drata Integrity I Conversion I Connectivity I Compatibility | Model Referencing

Model block version mismatch: I hohe
Port and parameter mismatch: I none
Model configuration mismatch: I none

Invalid root Inport/Outpart block connection: I none

Lol L LefLe] 14

Unsupported data logging: I warning

Model block version mismatch. Specifies the diagnostic action to take during
loading or updating of this model when Simulink detects a mismatch between
the version of the model used to create or refresh a Model block in this model
and the referenced model’s current version. The options are

¢ none (the default)

The Configuration Parameters Dialog Box

® warning
Refresh the Model block and report a warning message.
® error
Display an error message but do not refresh the Model block.

If you have enabled displaying of referenced model version numbers on Model
blocks for this model (see “Displaying Referenced Model Version Numbers” on
page 4-65), Simulink displays a version mismatch on the Model block icon as,
for example: Rev:1.0 != 1.2,

Port and parameter mismatch. Specifies the diagnostic action to take during model
loading or updating when Simulink detects a mismatch between the I/O ports
of a Model block in this model and the root-level I/O ports of the model it
references or between the parameter arguments recognized by the Model block
and the parameter arguments declared by the referenced model. The options
are

¢ none (the default)
® warning
Refresh the out-of-date Model block and report a warning message.
® error
Display an error message but do not refresh the out-of-date Model block.

Model block icons can display a message indicating port or parameter
mismatches. To enable this feature, select Block display -> Model block I/O
mismatch from the parent model’s Format menu.

Model configuration mismatch. Specifies the diagnostic action to take if the
configuration parameters of a model referenced by this model do not match this
model’s configuration parameters or are inappropriate for a referenced model.
The default action is none. Set this diagnostic to warning or error if you
suspect that an inappropriate or mismatched configuration parameter may be
causing your model to give the wrong result.

Invalid root Inport/Outport block connection. Specifies the diagnostic action to take
during code generation if Simulink detects invalid internal connections to this
model’s root-level Output port blocks.

When this option is set to error, Simulink reports an error if any of the
following types of connections appear in this model.

10-61

'|0 Running Simulations

¢ A root Output port is connected directly or indirectly to more than one
nonvirtual block port, for example:

5 > Cutl

¢ A root Output port is connected to a root Inport block, a Ground block, or a
nondata port (e.g, a state port).

-, »_1)

In1 Qutl

Ground

3
Qut3
B
In2 -1

Discrete -Time
Integrator

¢ Two root Outport blocks cannot be connected to the same block port.

In1 [: Qutl

Gain

Qut2

¢ An Outport block cannot be connected to some elements of a block output and
not others.

(1) b outt
In1

Gain

10-62

The Configuration Parameters Dialog Box

¢ An Outport block cannot be connected more than once to the same element.

T

Gain

If you select none (the default), Simulink silently inserts blocks to satisfy the
constraints wherever possible. In a few cases (such as function-call feedback
loops), the inserted blocks may introduce delays and thus may change
simulation results.

If you select warning, Simulink warns you that a connection constraint has

been violated and attempts to satisfy the constraint by inserting hidden blocks.

Auto-inserting hidden blocks to eliminate root I/O problems stops at subsystem
boundaries. Therefore, you may need to manually modify models with
subsystems that violate any of the above constraints.

Unsupported data logging. Specifies the diagnostic action to take if this model
contains To Workspace blocks or Scope blocks with data logging enabled. The
default action warns you that Simulink does not support use of these blocks to
log data from referenced models. See “Logging Referenced Model Signals” on

page 6-28 for information on how to log signals from a reference to this model.

Hardware Implementation Pane

This pane applies to models of computer-based systems, such as embedded
controllers. It allows you to specify the characteristics of the hardware to be
used to implement the system represented by this model. This in turn enables

10-63

'|0 Running Simulations

10-64

simulation of the model to detect error conditions that could arise on the target
hardware, such as hardware overflow.

—Embedded hardware [simulation and code generation)

Device type: I Unspecified [azsume 32-bit Generic) LI
Mumber of bits: char: IS— shart: I‘IB— (18 |32—

long: |32— hative word size: |32
Byte ordering: I Unzpecified LI
Signed integer divigion rounds to: I Undefined LI

¥ | Shift right on a signed integer as arithmetic shift

—Emulation hardware [code generation only]
¥ Mone

This pane contains the following groups of controls.

Embedded hardware

This group of controls enables you to specify the characteristics of the hardware
that will be used to implement the production version of the system
represented by this model. (See “Emulation hardware” on page 10-66 for
information on specifying the characteristics of hardware used to emulate the
production hardware.) This group includes the following controls.

Device type. Specifies the type of hardware that will be used to implement the
production version of the system represented by this model. The adjacent list
lists types of hardware that Simulink knows about and hence does not require
you to enter their characteristics. If your production hardware does not match
any of the listed types, select Unspecified (assume 32-bit Generic) ifit has
the characteristics of a generic 32-bit microprocessor; otherwise, Custom.

Number of bits. This group of controls specifies the length in bits of C data types
supported by the selected device type. Simulink disables these controls if it
knows the data type lengths for the selected device type.

Native word size. Specifies the word length in bits of the selected production
hardware device type. Simulink disables this field if it knows the word length
of the selected device type.

Signed integer division rounds to. Specifies how an ANSI C conforming compiler
used to compile code for the production hardware rounds the result of dividing

The Configuration Parameters Dialog Box

one signed integer by another to produce a signed integer quotient. The options
are

® Zero

Ifthe ideal quotient is between two integers, the compiler chooses the integer
that is closest to zero as the result.

® Floor

Ifthe ideal quotient is between two integers, the compiler chooses the integer
that is closest to negative infinity as the result.

® Undefined

The compiler’s rounding behavior is undefined if either or both operands are
negative.

The following table illustrates the compiler behavior specified by these options.

N D Ideal N/D Zero Floor Undefined
33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8or -9
33 -4 -8.25 -8 -9 -8or -9
-33 -4 8.25 8 8 -8or -9

The setting of this option affects only generation of code from the model (see the
Real-Time Workshop documentation for information on how this option affects
code generation). Use the Round integer calculations toward parameter
settings on your model’s blocks to simulate the rounding behavior of the C
compiler that you intend to use to compile code generated from the model. This
setting appears on the Signal data type pane of the parameter dialog boxes of
blocks that can perform signed integer arithmetic, such as the Product and
Sum blocks.

Shift right on a signed integer as arithmetic shift. Select this option if the C compiler
implements a signed integer right shift as an arithmetic right shift. An
arithmetic right shift fills bits vacated by the right shift with the value of the
most significant bit, which indicates the sign of the number in twos

10-65

'|0 Running Simulations

10-66

complement notation. It is equivalent to dividing the number by 2. This setting
affects only code generation.

Byte ordering. Specifies the significance of the first byte of a data word of the
target hardware. Select Big Endian if the first byte is the most significant,
Little Endian ifit is the least significant, or Unspecified if the significance
is unknown. This setting affects only code generation. See the Real-Time
Workshop documentation for more information.

Emulation hardware

This group of controls allows you to specify the characteristics of hardware
used to test code generated from this model.

Emulation hardware [code generation only]
’V ¥ Mone

Initially, this group of controls has only one control.

None. If checked, this check box specifies that the hardware used to test the
code generated from this model is the same as the production hardware or has
the same characteristics. If you plan to use emulation hardware that has
different characteristics, unselect this check box. This causes Simulink to
expand the group to display controls that allow you to specify the
characteristics of the emulation hardware.

—Emulation hardware [code generation only]

™ Mone
Device type: I Unspecified [azsume 32-bit Generic) LI
Mumber of bits: char: IS— shart: I‘IB— (18 |32—
long: |32— hative word size: |32—
Byte ordering: I Unzpecified

Signed integer divigion rounds to: I Undefined

¥ | Shift right on a signed integer as arithmetic shift

The additional controls are identical to the ones used to specify the
characteristics of the target hardware for your system. See “Embedded
hardware” on page 10-64 for information on using these controls.

The Configuration Parameters Dialog Box

Model Referencing Pane

The Model Referencing pane allows you to specify options for including other
models in this model and this model in other models and for building
simulation and code generation targets.

Model Referencing

—Rebuild options for all referenced model

Rebuild options: | Always rebuild targets LI

—Options for referencing this model

Tatal number of instances allowed per top model: | Multiple LI

Model dependencies:

% Specify the model dependencies as a cell anay of file names. The dependencies
% automatically include the model. mdl and linked library .mdl files. For files

% not on the MATLAE path, uze abzolute paths; prefis $MOL to a file path if the

% path is relative to the location of the .mdl file; wildcards are allowed; use a "%’

% to comment out a line; use .." to continue lines. For example,

o

{D:\warkhparameters. mat', '$MDL\mdlvars. mat, ..

4
% 'D:\wiorkhmasksh= m'}

™ Pass scalar root inputs by value

[~ Minimize algebraic loop occurences

Note The option descriptions use the term this model to refer to the model
that you are configuring and the term referenced model to designate models
referenced by this model.

The pane includes controls for specifying options for
¢ Including other models in this model (see “Rebuild options for all referenced
models” on page 10-67)

¢ Including the current model in other models (see “Options for referencing
this model” on page 10-69)

Rebuild options for all referenced models

This group allows you to specify rebuild options for models directly or indirectly
referenced by this model. It includes the following controls.

10-67

'|0 Running Simulations

10-68

Rebuild targets. This control specifies whether to rebuild simulation and
Real-Time Workshop targets for referenced models before updating,
simulating, or generating code from this model. This includes models indirectly
referenced by this model. The options, in order from safe and slow to fast and
risky, are

® Always rebuild targets

Always rebuild all targets referenced by this model before simulating,
updating, or generating code from it.

e If any changes detected (the default)

Rebuild the target for a referenced model if Simulink detects any changes of
any kind in the target’s dependencies. The dependencies include

= The referenced model’s model file

Block library files used by the referenced model

Targets of models referenced by the referenced model

S-functions and associated TLC files used by the referenced model

User-specified dependencies (see “Model dependencies” on page 10-70)
= Workspace variables used by the referenced model

This also checks for changes in the compiled form of the referenced model.
Checking the compiled model can detect some changes that occur even in
dependencies that you do not specify.

e If any changes in known dependencies detected

Rebuild a target if Simulink detects any changes in known target
dependencies (see above) since the target was last built. This option ignores
cosmetic changes, such as annotation changes, in the referenced model and
in any block library dependencies, thus preventing unnecessary rebuilds.
However, before selecting it, you should be certain that you have specified
every user-created dependency (e.g., M-files or MAT-files) for this model to
ensure that all targets that need to be rebuilt are rebuilt. Otherwise, invalid
simulation results may occur.

Note that this option cannot detect changes in unspecified dependencies,
such as M-files used to initialize block masks. If you suspect that a model has
such unknown dependencies, you can still guarantee valid simulation by
selecting the Always rebuild targets or the If any changes detected
option.

The Configuration Parameters Dialog Box

® Never rebuild targets

Never rebuild targets before simulating or generating code from this model.
If you are certain that your targets are up-to-date, you can use this option to
avoid time-consuming target dependency checking when simulating,
updating, or generating code from a model. Use this option with caution
because it may lead to invalid results if referenced model targets are not in
fact up-to-date.

Note It is a good idea to use the Always rebuild targets option before
deployment of a model to assure that all the model reference targets are
up-to-date.

Never rebuild targets diagnostic. This control appears only if you select the Never
rebuild targets option. It allows you to specify the diagnostic action that
Simulink should take if it detects a target that needs to be rebuilt. The options

are
® Error if targets require rebuild (the default)

® Warn if targets require rebuild
® None

Selecting None bypasses dependency checking, and thus enables faster
updating, simulation, and code generation, but can cause models that are not
up-to-date to malfunction or generate incorrect results.

Options for referencing this model

This group of controls specifies options for including this model in other
models. It includes the following controls.

Total number of instances allowed per top model. This option allows you to specify
how many references to this model (i.e., the model you are configuring) can
safely occur in another model. The options are

® One
® Multiple (the default)
® None

10-69

'|0 Running Simulations

10-70

If you specify None, and a reference to this model occurs in another model
(including its model references), Simulink displays an error when you try to
simulate or update the root model. Simulink similarly displays an error, if you
specify One and multiple references to this model occur in a root model
(including its model references). If you specify multiple and Simulink
determines that for some reason this model cannot be mutiply referenced,
Simulink displays an error when the model that references it is compiled or
simulated. This occurs even if the model is referenced only once.

Model dependencies. Specifies files on which this model relies. They are typically
MAT-files and M-files used to initialize parameters and to provide data.

Specify the dependencies as a cell array of strings, where each cell array entry
is the filename or path of a dependent file. These filenames may include spaces
and must include file extensions (e.g., .m, .mat, etc.).

Prefix the token $MDL to a dependency to indicate that the path to the
dependency is relative to the location of this model file.

If Simulink cannot find a specified dependent file when you update or simulate
a model that references this model, Simulink displays an error.

Pass scalar root inputs by value. Checking this option causes a model that calls
(i.e., references) this model to pass this model’s scalar inputs by value.
Otherwise, the calling model passes the inputs by reference, i.e., it passes the
addresses of the inputs rather than the input values.

Passing roots by value allows this model to read its scalar inputs from register
or local memory which is faster than reading the inputs from their original
locations. However, this option can lead to incorrect results if the model’s root
scalar inputs can change within a time step. This can happen, for instance, if
this model’s inputs and outputs share memory locations (e.g., as a result of a
feedback loop) and the model is invoked multiple times in a time step (i.e., by
a Function-Call Subsystem). In such cases, this model sees scalar input
changes that occur in the same time step only if the inputs are passed by
reference. That is why this option is off by default. If you are certain that this
model is not referenced in contexts where its inputs can change within a time
step, select this option to generate more efficient code for this model.

The Configuration Parameters Dialog Box

Note Selecting this option can affect reuse of code generated for subsystems.
See the Real-Time Workshop documentation for more information.

Minimize algebraic loop occurrences. Checking this option causes Simulink to try to
eliminate algebraic loops involving this model from models that reference it.
Enabling this option disables conditional input branch optimization for
simulation and the Real-Time Workshop single update/output function
optimization for code generation. See “Eliminating Algebraic Loops” on

page 2-27 for more information.

10-71

'|0 Running Simulations

Diagnosing Simulation Errors

10-72

If errors occur during a simulation, Simulink halts the simulation, opens the
subsystems that caused the error (if necessary), and displays the errors in the
Simulation Diagnostics Viewer. The following section explains how to use the
viewer to determine the cause of the errors.

Simulation Diagnostics Viewer

The viewer comprises an Error Summary pane and an Error Message pane.

Wieww Fort Size

Message Source Reported by Summary

-] 0 Actuatorhd - rulink Errar evaluating parameter ‘Denominator’ in hlock E
"] Ellock errar Gain3 qulink Errar evaluating parameter 'Gain'in block 1 4fAircraft Dynan
@ Blockerror Alpha-sens... Simulhek Errar evaluating parameter ‘Denominatar’ in block 1 4/Cont
@ Blockerror Ggustmao... Simulink rror evaluating parameter Wumeratar' in block 1 4/Dryden
@ Blockerror Ggustmao... Simulink Errdra aluatmg parameter ‘Denominator'in block 1 4/Dryd
@ Blockerror Gain Simulink Errar evalsting parameter 'Gain'in block 1 4/Gain' Undefir
°| Black error Gaini Simulink Errar evaluating pagameter 'Gain' in block 1 4/Gaini " IUndef i
4 »

@ 1 diActuator Model
Errar evaluating parameter 'Denominatar’ in block 1 4iA4ctuator Madel’ Undefined furttiqn or variable Ta'

~ Click to display
error source.

Qpen | Help | Close |

Error Summary Pane

The upper pane lists the errors that caused Simulink to terminate the
simulation. The pane displays the following information for each error.

Message. Message type (for example, block error, warning, log)
Source. Name of the model element (for example, a block) that caused the error

Reported by. Component that reported the error (for example, Simulink,
Stateflow, Real-Time Workshop, etc.)

Summary. Error message, abbreviated to fit in the column

Diagnosing Simulation

Errors

You can remove any of these columns of information to make more room for the
others. To remove a column, select the viewer’s View menu and uncheck the
corresponding item.

Error Message Pane

The lower pane initially contains the contents of the first error message listed
in the top pane. You can display the contents of other messages by clicking
their entries in the upper pane.

In addition to displaying the viewer, Simulink opens (if necessary) the
subsystem that contains the first error source and highlights the source.

E!untitled * 2
File Edit WYiew Simulation Format Tools Help

DIeEH&E|ER |0 pELE &

=0l x|

) ints ints 1| double
t(10 1
int3(10) E b double E

Constant Zain Integratar Scope

Fl1o0% [[|odets v

You can display the sources of other errors by clicking anywhere in the error
message in the upper pane, by clicking the name of the error source in the error
message (highlighted in blue), or by clicking the Open button on the viewer.

Changing Font Size

To change the size of the font used to display errors, select Font Size from the
viewer’s menu bar. A menu of font sizes appears. Select the desired font size
from the menu.

Creating Custom Simulation Error Messages

The Simulation Diagnostics Viewer displays the output of any instance of the
MATLAB error function executed during a simulation, including instances
invoked by block or model callbacks or S-functions that you create or that are
executed by the MATLAB Fcn block. Thus, you can use the MATLAB error
function in callbacks and S-functions or in the MATLAB Fen block to create
simulation error messages specific to your application.

10-73

'|0 Running Simulations

10-74

For example, in the following model,

WATLAR [E—
Function

Constant check_signal Dizplay

the MATLAB Fen block invokes the following function:

function y=check_signal(x)
if x<0
error('Signal is negative.');
else
y=X3
end

Executing this model displays an error message in the Simulation Diagnostics
Viewer.

i simulation Diagnostics: test_error 10l =|
Wiew Fort Size

Message Source Reported by Summary
[WElock error [check_sign...|Simulink Errar in MATLAB Function hlock te...
4 |

0 test _erroricheck_signal

Errarin MATLAB Function hlock test erraricheck signal while evaluating
expression: Error using === check_signal

Signal iz negative

Qpen | Help | Close |

Including Hyperlinks in Error Messages

You can include hyperlinks to blocks, text files, and directories.

To include a hyperlink to a block, path, or directory, include the item’s path in
the error message enclosed in quotation marks, e.g.,

® error ('Error evaluating parameter in block "mymodel/Mu"')

displays a text hyperlink to the block Mu in the current model in the error
message. Clicking the hyperlink displays the block in the model window.

Diagnosing Simulation Errors

® error ('Error reading data from "c:/work/test.data"')
displays a text hyperlink to the file test.data in the error message. Clicking
the link displays the file in your preferred MATLAB editor.

® error ('Could not find data in directory "c:/work"')

displays a text hyperlink to the c:/work directory. Clicking the link opens a
system command window (shell) and sets its working directory to c: /work.

Note The text hyperlink is enabled only if the corresponding block exists in
the current model or if the corresponding file or directory exists on the user’s

system.

10-75

'|0 Running Simulations

Improving Simulation Performance and Accuracy

Simulation performance and accuracy can be affected by many things,
including the model design and choice of configuration parameters.

The solvers handle most model simulations accurately and efficiently with
their default parameter values. However, some models yield better results if
you adjust solver parameters. Also, if you know information about your model’s
behavior, your simulation results can be improved if you provide this
information to the solver.

Speeding Up the Simulation

Slow simulation speed can have many causes. Here are a few:

® Your model includes a MATLAB Fecn block. When a model includes a
MATLAB Fen block, the MATLAB interpreter is called at each time step,
drastically slowing down the simulation. Use the built-in Fen block or Math
Function block whenever possible.

® Your model includes an M-file S-function. M-file S-functions also cause the
MATLAB interpreter to be called at each time step. Consider either
converting the S-function to a subsystem or to a C-MEX file S-function.

® Your model includes a Memory block. Using a Memory block causes the
variable-order solvers (ode15s and ode113) to be reset back to order 1 at each
time step.

® The maximum step size is too small. If you changed the maximum step size,
try running the simulation again with the default value (auto).

¢ Did you ask for too much accuracy? The default relative tolerance (0.1%
accuracy) is usually sufficient. For models with states that go to zero, if the
absolute tolerance parameter is too small, the simulation can take too many
steps around the near-zero state values. See the discussion of error in
“Maximum order” on page 10-35.

¢ The time scale might be too long. Reduce the time interval.

¢ The problem might be stiff, but you are using a nonstiff solver. Try using
ode15s.

¢ The model uses sample times that are not multiples of each other. Mixing
sample times that are not multiples of each other causes the solver to take
small enough steps to ensure sample time hits for all sample times.

10-76

Improving Simulation Performance and Accuracy

¢ The model contains an algebraic loop. The solutions to algebraic loops are
iteratively computed at every time step. Therefore, they severely degrade
performance. For more information, see “Algebraic Loops” on page 2-24.

® Your model feeds a Random Number block into an Integrator block. For
continuous systems, use the Band-Limited White Noise block in the Sources
library.

Improving Simulation Accuracy

To check your simulation accuracy, run the simulation over a reasonable time
span. Then, either reduce the relative tolerance to 1e-4 (the default is 1e-3) or
reduce the absolute tolerance and run it again. Compare the results of both
simulations. If the results are not significantly different, you can feel confident
that the solution has converged.

If the simulation misses significant behavior at its start, reduce the initial step
size to ensure that the simulation does not step over the significant behavior.

If the simulation results become unstable over time,

® Your system might be unstable.

¢ If you are using ode15s, you might need to restrict the maximum order to 2
(the maximum order for which the solver is A-stable) or try using the ode23s
solver.

If the simulation results do not appear to be accurate,

¢ For a model that has states whose values approach zero, if the absolute
tolerance parameter is too large, the simulation takes too few steps around
areas of near-zero state values. Reduce this parameter value or adjust it for
individual states in the Integrator dialog box.

¢ If reducing the absolute tolerances does not sufficiently improve the
accuracy, reduce the size of the relative tolerance parameter to reduce the
acceptable error and force smaller step sizes and more steps.

10-77

'|0 Running Simulations

Running a Simulation Programmatically

Entering simulation commands in the MATLAB Command Window or from an
M-file enables you to run unattended simulations. You can perform Monte
Carlo analysis by changing the parameters randomly and executing
simulations in a loop. You can run a simulation from the command line using
the sim command or the set _param command. Both are described below.

Using the sim Command
The full syntax of the command that runs the simulation is

[t,x,y] = sim(model, timespan, options, ut);

Only the model parameter is required. Parameters not supplied on the
command are taken from the Configuration Parameters dialog box settings.

For detailed syntax for the sim command, see the documentation for the sim
command. The options parameter is a structure that supplies additional
configuration parameters, including the solver name and error tolerances. You
define parameters in the options structure using the simset command (see
simset). The configuration parameters are discussed in “Configuration Sets”
on page 10-26.

Using the set_param Command

You can use the set_param command to start, stop, pause, or continue a
simulation, or update a block diagram. The format of the set_param command
for this use is

set _param('sys', 'SimulationCommand', 'cmd')

where 'sys' is the name of the system and 'cmd' is 'start', 'stop', 'pause’,
'continue', or 'update’.

Similarly, you can use the get_param command to check the status of a
simulation. The format of the get_param command for this use is

get_param('sys', 'SimulationStatus')
Simulink returns 'stopped’', 'initializing', 'running’', 'paused’,

‘updating', 'terminating', and 'external' (used with Real-Time
Workshop).

10-78

